Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Med Educ ; 24(1): 571, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789956

RESUMO

BACKGROUND: Case-based learning (CBL) methods have gained prominence in medical education, proving especially effective for preclinical training in undergraduate medical education. Tetralogy of Fallot (TOF) is a congenital heart disease characterized by four malformations, presenting a challenge in medical education due to the complexity of its anatomical pathology. Three-dimensional printing (3DP), generating physical replicas from data, offers a valuable tool for illustrating intricate anatomical structures and spatial relationships in the classroom. This study explores the integration of 3DP with CBL teaching for clinical medical undergraduates. METHODS: Sixty senior clinical medical undergraduates were randomly assigned to the CBL group and the CBL-3DP group. Computed tomography imaging data from a typical TOF case were exported, processed, and utilized to create four TOF models with a color 3D printer. The CBL group employed CBL teaching methods, while the CBL-3DP group combined CBL with 3D-printed models. Post-class exams and questionnaires assessed the teaching effectiveness of both groups. RESULTS: The CBL-3DP group exhibited improved performance in post-class examinations, particularly in pathological anatomy and TOF imaging data analysis (P < 0.05). Questionnaire responses from the CBL-3DP group indicated enhanced satisfaction with teaching mode, promotion of diagnostic skills, bolstering of self-assurance in managing TOF cases, and cultivation of critical thinking and clinical reasoning abilities (P < 0.05). These findings underscore the potential of 3D printed models to augment the effectiveness of CBL, aiding students in mastering instructional content and bolstering their interest and self-confidence in learning. CONCLUSION: The fusion of CBL with 3D printing models is feasible and effective in TOF instruction to clinical medical undergraduates, and worthy of popularization and application in medical education, especially for courses involving intricate anatomical components.


Assuntos
Educação de Graduação em Medicina , Impressão Tridimensional , Tetralogia de Fallot , Humanos , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Educação de Graduação em Medicina/métodos , Masculino , Estudantes de Medicina , Feminino , Aprendizagem Baseada em Problemas , Avaliação Educacional , Modelos Anatômicos , Adulto Jovem
2.
BMC Med Educ ; 21(1): 194, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823845

RESUMO

BACKGROUND: We combined anatomy with imaging, transformed the 2D information of various imaging techniques into 3D information, and form the assessment system of real medical imaging cases in order to make up for the deficiencies in the current teaching of the medical imaging technology students. METHODS: A total of 460 medical imaging students were selected and randomly divided into two groups. The research group received the teaching of the fusion of the original CT and MR data 3D model and the original image combined with 3D anatomical image. CT and MRI data are imported through load DICOM of 3D slicer. Different tissues and organs are segmented by threshold and watershed algorithm of segment editor module. Models are exported through export / import models and label maps in segmentation. Save the NHDR file of the original data and Obj file of the corresponding model through save the NHDR and corresponding Obj files are loaded into probe 1.0 software. The software can give different colors to the three-dimensional models of different organs or tissues to display the stereo models and related data, and display the hook edges of organ models on coronal, sagittal and axial images. At the same time, annotation can be established in the corresponding anatomical position. Finally, it can be saved as a single file of Hwl, and the teaching can be opened at any time through the program of probe 1.0. Statistical analysis Academic self-efficacy scale and Self-directed learning ability scale was adopted by self-directed learning evaluation scale between two groups. RESULTS: Compare the theoretical scores and case analysis scores of the two groups. The scores of the study and control groups were significantly higher than those of the control group. Before the experiment, no significant difference was detected in the self-efficacy of learning ability and learning behavior between the two groups, while after the experiment, these differences between the two groups were statistically significan. Moreover, the learning ability self-efficacy and learning behavior of the two groups of students after the experiment was significantly higher than that before the experiment. The self-efficacy of the learning behavior of the control group was higher after the experiment than that before the experiment, albeit the difference was not statistically significant. CONCLUSIONS: The modern, information-based and humanized experimental teaching mode will be constantly improved under the support of PACS system in order to optimize the medical imaging teaching activities for the development of modern medical education.


Assuntos
Imageamento Tridimensional , Estudantes de Medicina , Humanos , Aprendizagem , Imageamento por Ressonância Magnética , Ensino , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA