Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 107(47): 20240-5, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21059954

RESUMO

Engineered glyphosate resistance is the most widely adopted genetically modified trait in agriculture, gaining widespread acceptance by providing a simple robust weed control system. However, extensive and sustained use of glyphosate as a sole weed control mechanism has led to field selection for glyphosate-resistant weeds and has induced significant population shifts to weeds with inherent tolerance to glyphosate. Additional weed control mechanisms that can complement glyphosate-resistant crops are, therefore, urgently needed. 2,4-dichlorophenoxyacetic acid (2,4-D) is an effective low-cost, broad-spectrum herbicide that controls many of the weeds developing resistance to glyphosate. We investigated the substrate preferences of bacterial aryloxyalkanoate dioxygenase enzymes (AADs) that can effectively degrade 2,4-D and have found that some members of this class can act on other widely used herbicides in addition to their activity on 2,4-D. AAD-1 cleaves the aryloxyphenoxypropionate family of grass-active herbicides, and AAD-12 acts on pyridyloxyacetate auxin herbicides such as triclopyr and fluroxypyr. Maize plants transformed with an AAD-1 gene showed robust crop resistance to aryloxyphenoxypropionate herbicides over four generations and were also not injured by 2,4-D applications at any growth stage. Arabidopsis plants expressing AAD-12 were resistant to 2,4-D as well as triclopyr and fluroxypyr, and transgenic soybean plants expressing AAD-12 maintained field resistance to 2,4-D over five generations. These results show that single AAD transgenes can provide simultaneous resistance to a broad repertoire of agronomically important classes of herbicides, including 2,4-D, with utility in both monocot and dicot crops. These transgenes can help preserve the productivity and environmental benefits of herbicide-resistant crops.


Assuntos
Ácido 2,4-Diclorofenoxiacético/metabolismo , Arabidopsis/genética , Cupriavidus necator/enzimologia , Dioxigenases/genética , Resistência a Herbicidas/genética , Herbicidas/toxicidade , Zea mays/genética , Ácido 2,4-Diclorofenoxiacético/toxicidade , Southern Blotting , Western Blotting , Cupriavidus necator/genética , Delftia acidovorans/enzimologia , Dioxigenases/metabolismo , Ensaio de Imunoadsorção Enzimática , Escherichia coli , Engenharia Genética , Glicina/análogos & derivados , Glicina/toxicidade , Cinética , Estrutura Molecular , Sphingomonadaceae/enzimologia , Especificidade por Substrato , Transformação Genética/genética , Transgenes/genética , Glifosato
2.
Plant Physiol ; 153(1): 99-113, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20200070

RESUMO

In higher plants, three subfamilies of sucrose nonfermenting-1 (Snf1)-related protein kinases have evolved. While the Snf1-related protein kinase 1 (SnRK1) subfamily has been shown to share pivotal roles with the orthologous yeast Snf1 and mammalian AMP-activated protein kinase in modulating energy and metabolic homeostasis, the functional significance of the two plant-specific subfamilies SnRK2 and SnRK3 in these critical processes is poorly understood. We show here that SnRK2.6, previously identified as crucial in the control of stomatal aperture by abscisic acid (ABA), has a broad expression pattern and participates in the regulation of plant primary metabolism. Inactivation of this gene reduced oil synthesis in Arabidopsis (Arabidopsis thaliana) seeds, whereas its overexpression increased Suc synthesis and fatty acid desaturation in the leaves. Notably, the metabolic alterations in the SnRK2.6 overexpressors were accompanied by amelioration of those physiological processes that require high levels of carbon and energy input, such as plant growth and seed production. However, the mechanisms underlying these functionalities could not be solely attributed to the role of SnRK2.6 as a positive regulator of ABA signaling, although we demonstrate that this kinase confers ABA hypersensitivity during seedling growth. Collectively, our results suggest that SnRK2.6 mediates hormonal and metabolic regulation of plant growth and development and that, besides the SnRK1 kinases, SnRK2.6 is also implicated in the regulation of metabolic homeostasis in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Óleos de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sementes/metabolismo , Sacarose/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Metabolismo Energético , Ácidos Graxos Dessaturases/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação , Vírus do Mosaico , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento
3.
J Invertebr Pathol ; 103(1): 1-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19766122

RESUMO

The biochemical mechanism of resistance to the Bacillus thuringiensis Cry1F toxin was studied in a laboratory-selected strain of Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) showing more than 3000-fold resistance to Cry1F and limited cross resistance to other Cry toxins. Analyses of Cry1F binding to brush border membrane vesicles of midgut epithelia from susceptible and resistant larvae using ligand immunoblotting and Surface Plasmon Resonance (SPR) suggested that reduced binding of Cry1F to insect receptors was not associated with resistance. Additionally, no differences in activity of luminal gut proteases or altered proteolytic processing of the toxin were observed in the resistant strain. Considering these results along with previous evidence of relatively narrow spectrum of cross resistance and monogenic inheritance, the resistance mechanism in this Cry1F selected strain of O. nubilalis appears to be specific and may be distinct from previously identified resistance mechanisms reported in other Lepidoptera.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Lepidópteros/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Bacillus thuringiensis/isolamento & purificação , Bacillus thuringiensis/metabolismo , Trato Gastrointestinal/enzimologia , Larva/metabolismo , Larva/microbiologia , Lepidópteros/microbiologia , Ligação Proteica
4.
Trends Plant Sci ; 24(1): 58-68, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385102

RESUMO

The risks of not considering benefits in risk assessment are often overlooked. Risks are also often evaluated without consideration of the broader context. We discuss these two concepts in relation to genetically engineered (GE) crops. The health, environmental, and economic risks and benefits of GE crops are exemplified and presented in the context of modern agriculture. Misattribution of unique risks to GE crops are discussed. It is concluded that the scale of modern agriculture is its distinguishing characteristic and that the greater knowledge around GE crops allows for a more thorough characterization of risk. By considering the benefits and risks in the context of modern agriculture, society will be better served and benefits will be less likely to be forgone.


Assuntos
Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/efeitos adversos , Medição de Risco , Produtos Agrícolas/efeitos adversos , Engenharia Genética/efeitos adversos , Plantas Geneticamente Modificadas/genética , Medição de Risco/métodos
5.
PLoS One ; 11(2): e0149515, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26908260

RESUMO

Demand for the commercial use of genetically modified (GM) crops has been increasing in light of the projected growth of world population to nine billion by 2050. A prerequisite of paramount importance for regulatory submissions is the rigorous safety assessment of GM crops. One of the components of safety assessment is molecular characterization at DNA level which helps to determine the copy number, integrity and stability of a transgene; characterize the integration site within a host genome; and confirm the absence of vector DNA. Historically, molecular characterization has been carried out using Southern blot analysis coupled with Sanger sequencing. While this is a robust approach to characterize the transgenic crops, it is both time- and resource-consuming. The emergence of next-generation sequencing (NGS) technologies has provided highly sensitive and cost- and labor-effective alternative for molecular characterization compared to traditional Southern blot analysis. Herein, we have demonstrated the successful application of both whole genome sequencing and target capture sequencing approaches for the characterization of single and stacked transgenic events and compared the results and inferences with traditional method with respect to key criteria required for regulatory submissions.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Plantas Geneticamente Modificadas/genética , Transgenes , Southern Blotting , Dosagem de Genes , Genômica/métodos , Melhoramento Vegetal , Glycine max/genética
7.
J Invertebr Pathol ; 92(3): 178-87, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16797582

RESUMO

Cadherin-like proteins have been identified as putative receptors for the Bacillus thuringiensis Cry1A proteins in Heliothis virescens and Manduca sexta. Immunohistochemistry showed the cadherin-like proteins are present in the insect midgut apical membrane, which is the target site of Cry toxins. This subcellular localization is distinct from that of classical cadherins, which are usually present in cell-cell junctions. Immunoreactivity of the cadherin-like protein in the insect midgut was enhanced by Cry1Ac ingestion. We also generated a stable cell line Flp-InT-REX-293/Full-CAD (CAD/293) that expressed the H. virescens cadherin. As expected, the cadherin-like protein was mainly localized in the cell membrane. Interestingly, toxin treatment of CAD/293 cells caused this protein to relocalize to cell membrane subdomains. In addition, expression of H. virescens cadherin-like protein affects cell-cell contact and cell membrane integrity when the cells are exposed to activated Cry1Ab/Cry1Ac.


Assuntos
Bacillus thuringiensis/metabolismo , Caderinas/metabolismo , Proteínas de Insetos/metabolismo , Lepidópteros/microbiologia , Receptores de Superfície Celular/metabolismo , Animais , Proteínas de Bactérias , Caderinas/análise , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Humanos , Imuno-Histoquímica , Proteínas de Insetos/análise , Larva/microbiologia , Larva/ultraestrutura , Lepidópteros/crescimento & desenvolvimento , Lepidópteros/ultraestrutura , Manduca/microbiologia , Manduca/ultraestrutura , Receptores de Superfície Celular/análise
8.
J Biol Chem ; 280(9): 8416-25, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15572369

RESUMO

Bacillus thuringiensis Cry protein exerts its toxic effect through a receptor-mediated process. Both aminopeptidases and cadherin proteins were identified as putative Cry1A receptors from Heliothis virescens and Manduca sexta. The importance of cadherin was implied by its correlation with a Cry1Ac resistant H. virescens strain (Gahan, L. J., Gould, F., and Heckel, D. G. (2001) Science 293, 857-860). In this study, the Cry1Ac toxin-binding region in H. virescens cadherin was mapped to a 40-amino-acid fragment, from amino acids 1422 to 1440. This site overlaps with a Cry1Ab toxin-binding site, amino acids 1363-1464 recently reported in M. sexta (Hua, G., Jurat-Fuentes, J. L., and Adang, M. J. (2004) J. Biol. Chem. 279, 28051-28056). Further, feeding of the anti-H. virescens cadherin antiserum or the partial cadherins, which contain the toxin-binding region, in combination with Cry1Ab/Cry1Ac reduced insect mortality by 25.5-55.6% to first instar H. virescens and M. sexta larvae, suggesting a critical function for this cadherin domain in insect toxicity. Mutations in this region, to which the Cry1Ac binds through its loop 3, resulted in the loss of toxin binding. For the first time, we show that the cadherin amino acids Leu(1425) and Phe(1429) are critical for Cry1Ac toxin interaction, and if substituted with charged amino acids, result in the loss of toxin binding, with a K(D) of < 10(-5) m. Mutation of Gln(1430) to an alanine, however, increased the Cry1Ac affinity 10-fold primarily due to an increase on rate. The L1425R mutant can result from a single nucleotide mutation, CTG --> CGG, suggesting that these mutants, which have decreased toxin binding, may lead to Cry1A resistance in insects.


Assuntos
Proteínas de Bactérias/química , Toxinas Bacterianas/química , Caderinas/química , Caderinas/genética , Endotoxinas/química , Mutação , Alanina/química , Sequência de Aminoácidos , Aminoácidos/química , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Sítios de Ligação , Bioensaio , Caderinas/metabolismo , Clonagem Molecular , DNA Complementar/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas , Cinética , Dados de Sequência Molecular , Mariposas , Mutagênese , Peptídeos/química , Reação em Cadeia da Polimerase , Ligação Proteica , Estrutura Terciária de Proteína , RNA/química , Ressonância de Plasmônio de Superfície , Fatores de Tempo , Toxinas Biológicas/química
9.
J Biol Chem ; 277(16): 13863-72, 2002 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-11836242

RESUMO

Lipid rafts are characterized by their insolubility in nonionic detergents such as Triton X-100 at 4 degrees C. They have been studied in mammals, where they play critical roles in protein sorting and signal transduction. To understand the potential role of lipid rafts in lepidopteran insects, we isolated and analyzed the protein and lipid components of these lipid raft microdomains from the midgut epithelial membrane of Heliothis virescens and Manduca sexta. Like their mammalian counterparts, H. virescens and M. sexta lipid rafts are enriched in cholesterol, sphingolipids, and glycosylphosphatidylinositol-anchored proteins. In H. virescens and M. sexta, pretreatment of membranes with the cholesterol-depleting reagent saponin and methyl-beta-cyclodextrin differentially disrupted the formation of lipid rafts, indicating an important role for cholesterol in lepidopteran lipid rafts structure. We showed that several putative Bacillus thuringiensis Cry1A receptors, including the 120- and 170-kDa aminopeptidases from H. virescens and the 120-kDa aminopeptidase from M. sexta, were preferentially partitioned into lipid rafts. Additionally, the leucine aminopeptidase activity was enriched approximately 2-3-fold in these rafts compared with brush border membrane vesicles. We also demonstrated that Cry1A toxins were associated with lipid rafts, and that lipid raft integrity was essential for in vitro Cry1Ab pore forming activity. Our study strongly suggests that these microdomains might be involved in Cry1A toxin aggregation and pore formation.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas , Endotoxinas/metabolismo , Microdomínios da Membrana/química , beta-Ciclodextrinas , Animais , Toxinas de Bacillus thuringiensis , Biotinilação , Western Blotting , Colesterol/metabolismo , Ciclodextrinas/química , Detergentes/farmacologia , Eletroforese em Gel de Poliacrilamida , Proteínas Hemolisinas , Immunoblotting , Insetos , Leucina/química , Metabolismo dos Lipídeos , Lipídeos/química , Manduca , Potenciais da Membrana , Octoxinol/farmacologia , Fosfatidilinositol Diacilglicerol-Liase , Ligação Proteica , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização por Electrospray , Fatores de Tempo , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA