Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 35(20)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38350123

RESUMO

As an idealized light source, semiconductor nanowire (NW) lasers have been extensively studied due to its potential applications in many fields such as optoelectronics, nanophononics, optical communication, signal processing, and displays. In this letter, we proposed a novel approach to realize a single-mode nanolaser by forming an Fabry-Perot whispering gallery mode (FP-WGM) hybrid nanocavity between two cross-contact CdS NWs, i.e.xandy-NW. In our method,x-NW supports the regular FP oscillation in the axis direction while the cross section ofy-NW provides a ultrasmall WGM nanocavity with a higherQ-factor and mode election which confirms the specific single mode can be excited. Experimentally, single-mode lasing emission centered at 517 nm was obtained with full width at half maximum of 0.08 nm and lasing threshold of ∼50 kW cm-2. The suggested designing skills projected a general strategy for lasing mode regulation and single-mode realization. The single-mode low-threshold lasing strategy in coupled NWs may open a new avenue for practical applications of NW lasers and further trigger other photonic devices at a visible range.

2.
Nanotechnology ; 31(22): 225202, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31952068

RESUMO

Dynamically regulated coherent light emission offers a significant impact on improving white light generation, optical communication, on-chip photonic integration, and sensing. Here, we have demonstrated two mechanisms of strain-induced dynamic regulation of ZnO lasing modes through an individual ZnO microbelt and microrod prepared by vapor-phase transport method. We systematically explained the dependence on externally applied strain and crystal orientation. Compared with the reduced size of resonant cavity played a major role in the microbelt, the resonant wavelength variation of the microrod under tensile stress is affected by the change in both the cavity size and the refractive index, which tends to antagonize in the direction of movement. It shows that the refractive index can be effectively regulated only when the stress is in the same direction along the c-axis. The results on the linear relationship between the resonance wavelength variation and applied strain imply the capacity of the devices to detect tiny stresses due to the ultra-narrow line width of the cavity mode with a high-quality factor of âˆ¼104. It not only has a positive influence in the field of the modulated coherent light source, but also provides a feasible strategy for implementing color-resolved non-contact strain sensors.

3.
Opt Lett ; 42(21): 4569-4572, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088215

RESUMO

In this Letter, we show how to obtain high-contrast wide-field evanescent wave illuminated subdiffraction imaging through controlling nanoscale light-matter interaction. The light coupling, propagation, and far-field imaging processes show strong polarization selectivity and film quality dependence, which is used to improve the image-contrast-to-noise ratio (CNR) and to enlarge the field of view (FOV). We demonstrate experimentally high CNR subdiffraction imaging with lateral resolution of 122 nm and FOV of thousands of micrometers square.

4.
Adv Mater ; 35(28): e2300344, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37031351

RESUMO

Efficient control of integrated light sources is crucial to advancing practical applications of nanophotonics. Despite the success of microlasers, their sophisticated nanostructures are not applicable in nanolasers. The situation for bottom-up-synthesized nanolasers becomes more challenging due to the constraints of fixed cavity shapes and fragile material stability. Here, the physics of exceptional points (EPs) is employed, and a strategy is demonstrated to precisely tune the lasing actions in lead halide perovskite nanorods. By placing a nanoparticle to the boundary of a square nanocavity, it is shown that EPs regularly and controllably emerge as a function of the nanoparticle position. Consequently, both the internal lasing actions and their far-field radiation can be completely reversed with a tiny displacement of <100 nm. The new strategy for controlling lasing actions in nanocavities is confirmed with numerical simulations and lasing experiments. This research can also bring new avenues for ultrasensitive position sensing.


Assuntos
Nanopartículas , Nanoestruturas , Nanotubos , Compostos de Cálcio
5.
Adv Sci (Weinh) ; 8(9): 2003136, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33977045

RESUMO

High-sensitivity chemical imaging offers a window to decipher the molecular orchestra inside a living system. Based on vibrational fingerprint signatures, coherent Raman scattering microscopy provides a label-free approach to map biomolecules and drug molecules inside a cell. Yet, by near-infrared (NIR) pulse excitation, the sensitivity is limited to millimolar concentration for endogenous biomolecules. Here, the imaging sensitivity of stimulated Raman scattering (SRS) is significantly boosted for retinoid molecules to 34 micromolar via electronic preresonance in the visible wavelength regime. Retinoids play critical roles in development, immunity, stem cell differentiation, and lipid metabolism. By visible preresonance SRS (VP-SRS) imaging, retinoid distribution in single embryonic neurons and mouse brain tissues is mapped, retinoid storage in chemoresistant pancreatic and ovarian cancers is revealed, and retinoids stored in protein network and lipid droplets of Caenorahbditis elegans are identified. These results demonstrate VP-SRS microscopy as an ultrasensitive label-free chemical imaging tool and collectively open new opportunities of understanding the function of retinoids in biological systems.


Assuntos
Microscopia Óptica não Linear/métodos , Retinoides/metabolismo , Animais , Encéfalo/metabolismo , Caenorhabditis elegans , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Modelos Animais , Ratos , Ratos Sprague-Dawley , Retinoides/química
6.
Adv Mater ; 31(18): e1900647, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30908795

RESUMO

CsPbBr3 shows great potential in laser applications due to its superior optoelectronic characteristics. The growth of CsPbBr3 wire arrays with well-controlled sizes and locations is beneficial for cost-effective and largely scalable integration into on-chip devices. Besides, dynamic modulation of perovskite lasers is vital for practical applications. Here, monocrystalline CsPbBr3 microwire (MW) arrays with tunable widths, lengths, and locations are successfully synthesized. These MWs could serve as high-quality whispering-gallery-mode lasers with high quality factors (>1500), low thresholds (<3 µJ cm-2 ), and long stability (>2 h). An increase of the width results in an increase of the laser quality and the resonant mode number. The dynamic modulation of lasing modes is achieved by a piezoelectric polarization-induced refractive index change. Single-mode lasing can be obtained by applying strain to CsPbBr3 MWs with widths between 2.3 and 3.5 µm, and the mode positions can be modulated dynamically up to ≈9 nm by changing the applied strain. Piezoelectric-induced dynamic modulation of single-mode lasing is convenient and repeatable. This method opens new horizons in understanding and utilizing the piezoelectric properties of lead halide perovskites in lasing applications and shows potential in other applications, such as on-chip strain sensing.

7.
ACS Nano ; 13(9): 9965-9972, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31398003

RESUMO

As an ideal miniaturized light source, wavelength-tunable nanolasers capable of emitting a wide spectrum stimulate intense interests for on-chip optoelectronics, optical communications, and spectroscopy. However, realization of such devices remains a major challenge because of extreme difficulties in achieving continuously reversibly tunable gain media and high quality (Q)-factor resonators on the nanoscale simultaneously. Here, exploiting single bandgap-graded CdSSe NWs and a Fabry-Pérot/whispering gallery mode (FP/WGM) coupling cavity, a free-standing fiber-integrated reversibly wavelength-tunable nanolaser covering a 42 nm wide spectrum at room temperature with high stability and reproducibility is demonstrated. In addition, a 1.13 nm tuning spectral resolution is realized. The substrate-free device design enables integration in optical fiber communications and information. With reversible and wide, continuous tunability of emission color and precise control per step, our work demonstrates a general approach to nanocavity coupling affording high Q-factors, enabling an ideal miniaturized module for a broad range of applications in optics and optoelectronics, with optical fiber integration.

8.
Science ; 365(6457): 1017-1020, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31488686

RESUMO

Spectrometers with ever-smaller footprints are sought after for a wide range of applications in which minimized size and weight are paramount, including emerging in situ characterization techniques. We report on an ultracompact microspectrometer design based on a single compositionally engineered nanowire. This platform is independent of the complex optical components or cavities that tend to constrain further miniaturization of current systems. We show that incident spectra can be computationally reconstructed from the different spectral response functions and measured photocurrents along the length of the nanowire. Our devices are capable of accurate, visible-range monochromatic and broadband light reconstruction, as well as spectral imaging from centimeter-scale focal planes down to lensless, single-cell-scale in situ mapping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA