Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nature ; 587(7834): 408-413, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208960

RESUMO

The oxygen evolution reaction has an important role in many alternative-energy schemes because it supplies the protons and electrons required for converting renewable electricity into chemical fuels1-3. Electrocatalysts accelerate the reaction by facilitating the required electron transfer4, as well as the formation and rupture of chemical bonds5. This involvement in fundamentally different processes results in complex electrochemical kinetics that can be challenging to understand and control, and that typically depends exponentially on overpotential1,2,6,7. Such behaviour emerges when the applied bias drives the reaction in line with the phenomenological Butler-Volmer theory, which focuses on electron transfer8, enabling the use of Tafel analysis to gain mechanistic insight under quasi-equilibrium9-11 or steady-state assumptions12. However, the charging of catalyst surfaces under bias also affects bond formation and rupture13-15, the effect of which on the electrocatalytic rate is not accounted for by the phenomenological Tafel analysis8 and is often unknown. Here we report pulse voltammetry and operando X-ray absorption spectroscopy measurements on iridium oxide to show that the applied bias does not act directly on the reaction coordinate, but affects the electrocatalytically generated current through charge accumulation in the catalyst. We find that the activation free energy decreases linearly with the amount of oxidative charge stored, and show that this relationship underlies electrocatalytic performance and can be evaluated using measurement and computation. We anticipate that these findings and our methodology will help to better understand other electrocatalytic materials and design systems with improved performance.

3.
Chem Soc Rev ; 50(5): 2984-3012, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33624659

RESUMO

Natural gas is widely considered as the key feedstock to enable the transition from the oil to the renewables era. Despite its vast reserves, the use of this resource to produce energy and chemicals does not match its full potential. The main reason lies in the nature of its wells, which are often found in remote locations around the globe, rendering access and transportation challenging. To aid this development, several technologies for energy and energy carrier production have been developed, all of which have in common the goal of upgrading natural gas directly at the source of extraction. Following this direction, this review firstly analyses the advances in process design towards decentralised generation of electricity and of liquefied natural gas. Subsequently, recent efforts in progress made in catalysed alkane transformations using heterogeneous catalysts are reviewed for small-scale chemicals and fuels production. The presented analysis identifies that techno-economic and life-cycle assessments should be widely performed to enable proper technological benchmarking of these technologies. The integration of these multidisciplinary fields is key to foster synergies between researchers in the areas of decentralised energy and energy carrier generation in view of developing effective and efficient processes for valorising natural gas directly on-site.

4.
Angew Chem Int Ed Engl ; 60(45): 24089-24095, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34288317

RESUMO

The use of ethane as a platform molecule for the manufacture of polyvinyl chloride (PVC) is a longstanding challenge, which would allow to reduce the raw material costs and CO2 emissions to produce this plastic. Herein, we discover that rare earth oxychlorides catalyze in a selective (up to 90 %) and stable (>50 h on stream) manner the reaction of ethane and molecular chlorine into 1,2-dichloroethane, which, upon established cracking, will translate into an order of magnitude higher vinyl chloride productivity compared to ethane oxychlorination technologies. In addition, representative europium oxychloride was supported on suitable carriers and was demonstrated to be selective (up to 90 %) and stable (>40 h on stream) in extrudate form. These findings bring the ethane-based production of PVC one step closer to implementation.

5.
Angew Chem Int Ed Engl ; 60(7): 3596-3602, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33166088

RESUMO

Identification and quantification of redox-active centers at relevant conditions for catalysis is pivotal to understand reaction mechanisms and requires development of advanced operando methods. Herein, we demonstrate operando EPR spectroscopy as an important technique to quantify the oxidation state of representative CrPO4 and EuOCl catalysts during propane oxychlorination, an attractive route for propylene production. In particular, we show that the space-time-yield of C3 H6 correlates with the amount of Cr2+ and Eu2+ ions generated over the catalysts during reaction. These results provide a powerful strategy to gather quantitative understanding of selective alkane oxidation, which could potentially be extrapolated to other functionalization approaches and operating conditions.

6.
Chimia (Aarau) ; 73(4): 288-293, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30975258

RESUMO

Development of catalytic technologies enabling the direct functionalization of light alkanes, main components of abundant natural gas, into value-added chemicals and liquid fuels is quite possibly the key strategy to transit from the oil to the renewables era. A cornerstone to meet this great challenge comprises the in-depth understanding of complex reaction mechanisms over dynamic surfaces, allowing to elucidate catalyst design criteria for selective alkane functionalization processes. Prominent examples are the oxybromination of methane into bromomethanes (CH3Br+CH2Br2) and the oxychlorination of ethane into ethylene, which are the two highly selective routes (selectivity ≤98.5%) that have been proposed to involve gas-phase pathways or purely surface-driven reactions, respectively. Herein, we review our recent efforts to uncover these complex reaction schemes that combine kinetic analysis with advanced operando characterization techniques, including prompt-gamma activation analysis and photoelectron photoion coincidence spectroscopy, ultimately rationalized by density functional theory calculations. In particular, alkane activation to methyl bromide in oxybromination was found to occur in the gas-phase with evolved bromine and bromine radical species, thus enabling to decouple the formation of highly reactive methane-derived intermediates from the catalyst surface that are prone towards combustion. In contrast, the selectivity control in ethane oxychlorination is achieved via a purely surface-driven functionalization of ethane into ethyl chloride, which is further dehydrochlorinated to ethylene over chlorine modified active centers.

7.
Angew Chem Int Ed Engl ; 58(18): 5877-5881, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30645015

RESUMO

The product distribution in direct alkane functionalization by oxyhalogenation strongly depends on the halogen of choice. We demonstrate that the superior selectivity to olefins over an iron phosphate catalyst in oxychlorination is the consequence of a surface-confined reaction. By contrast, in oxybromination alkane activation follows a gas-phase radical-chain mechanism and yields a mixture of alkyl bromide, cracking, and combustion products. Surface-coverage analysis of the catalyst and identification of gas-phase radicals in operando mode are correlated to the catalytic performance by a multi-technique approach, which combines kinetic studies with advanced characterization techniques such as prompt-gamma activation analysis and photoelectron photoion coincidence spectroscopy. Rationalization of gas-phase and surface contributions by density functional theory reveals that the molecular level effects of chlorine are pivotal in determining the stark selectivity differences. These results provide strategies for unraveling detailed mechanisms within complex reaction networks.

8.
Angew Chem Int Ed Engl ; 56(44): 13670-13674, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-28771898

RESUMO

Ethylene and propylene are the key building blocks of the chemical industry, but current processes are unable to close the growing gap between demand and manufacture. Reported herein is an exceptional europium oxychloride (EuOCl) catalyst for the selective (≥95 %) production of light olefins from ethane and propane by oxychlorination chemistry, thus achieving yields of ethylene (90 %) and propylene (40 %) unparalleled by any existing olefin production technology. Moreover, EuOCl is able to process mixtures of methane, ethane, and propane to produce the olefins, thereby reducing separation costs of the alkanes in natural gas. Finally, the EuOCl catalyst was supported on suitable carriers and evaluated in extrudate form, and preserves performance for >150 h under realistic process conditions.

9.
Angew Chem Int Ed Engl ; 55(50): 15619-15623, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27865033

RESUMO

A catalytic process is demonstrated for the selective conversion of methane into carbon monoxide via oxychlorination chemistry. The process involves addition of HCl to a CH4 -O2 feed to facilitate C-H bond activation under mild conditions, leading to the formation of chloromethanes, CH3 Cl and CH2 Cl2 . The latter are oxidized in situ over the same catalyst, yielding CO and recycling HCl. A material exhibiting chlorine evolution by HCl oxidation, high activity to oxidize chloromethanes into CO, and no ability to oxidize CO, is therefore essential to accomplish this target. Following these design criteria, vanadyl pyrophosphate (VPO) was identified as an outstanding catalyst, exhibiting a CO yield up to approximately 35 % at 96 % selectivity and stable behavior. These findings constitute a basis for the development of a process enabling the on-site valorization of stranded natural-gas reserves using CO as a highly versatile platform molecule.

11.
ACS Sustain Chem Eng ; 11(35): 13062-13069, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37680580

RESUMO

The synthesis of the vinyl chloride monomer (VCM), employed to manufacture poly(vinyl chloride) (PVC) plastic, primarily relies on oil-derived ethylene, resulting in high costs and carbon footprint. Natural gas-derived ethane in VCM synthesis has long been considered a transformative feedstock to lower emissions and expenses. In this work, we evaluate the environmental potential and economics of recently developed catalytic ethane chlorination technologies for VCM synthesis. We consider the ethylene-based business-as-usual (BAU) route and two different ethane-based processes evaluated at their current development level and their full potential, i.e., ideal conversion and selectivity. All routes are assessed under two temporal scenarios: present (2020) and prospective (2050). Combining process simulation and life cycle assessment (LCA), we find that catalytic ethane chlorination technologies can lower the production cost by 32% at their current development state and by 56% when considering their full potential. Though environmentally disadvantageous in the 2020 scenario, they emerge as more sustainable alternatives to the BAU in the 2050 scenario, reducing the carbon footprint of VCM synthesis by up to 26% at their current state and up to 58% at their full potential. Going beyond VCM synthesis, our results highlight prospective LCA as a powerful tool for assessing the true environmental implications of emerging technologies under more decarbonized future energy scenarios.

12.
Nat Catal ; 5(7): 605-614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35892076

RESUMO

Understanding hydrocarbon generation in the zeolite-catalysed conversions of methanol and methyl chloride requires advanced spectroscopic approaches to distinguish the complex mechanisms governing C-C bond formation, chain growth and the deposition of carbonaceous species. Here operando photoelectron photoion coincidence (PEPICO) spectroscopy enables the isomer-selective identification of pathways to hydrocarbons of up to C14 in size, providing direct experimental evidence of methyl radicals in both reactions and ketene in the methanol-to-hydrocarbons reaction. Both routes converge to C5 molecules that transform into aromatics. Operando PEPICO highlights distinctions in the prevalence of coke precursors, which is supported by electron paramagnetic resonance measurements, providing evidence of differences in the representative molecular structure, density and distribution of accumulated carbonaceous species. Radical-driven pathways in the methyl chloride-to-hydrocarbons reaction(s) accelerate the formation of extended aromatic systems, leading to fast deactivation. By contrast, the generation of alkylated species through oxygenate-driven pathways in the methanol-to-hydrocarbons reaction extends the catalyst lifetime. The findings demonstrate the potential of the presented methods to provide valuable mechanistic insights into complex reaction networks.

13.
JACS Au ; 2(10): 2259-2268, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36311830

RESUMO

The development of technologies to recycle polyethylene (PE) and polypropylene (PP), globally the two most produced polymers, is critical to increase plastic circularity. Here, we show that 5 wt % cobalt supported on ZSM-5 zeolite catalyzes the solvent-free hydrogenolysis of PE and PP into propane with weight-based selectivity in the gas phase over 80 wt % after 20 h at 523 K and 40 bar H2. This catalyst significantly reduces the formation of undesired CH4 (≤5 wt %), a product which is favored when using bulk cobalt oxide or cobalt nanoparticles supported on other carriers (selectivity ≤95 wt %). The superior performance of Co/ZSM-5 is attributed to the stabilization of dispersed oxidic cobalt nanoparticles by the zeolite support, preventing further reduction to metallic species that appear to catalyze CH4 generation. While ZSM-5 is also active for propane formation at 523 K, the presence of Co promotes stability and selectivity. After optimizing the metal loading, it was demonstrated that 10 wt % Co/ZSM-5 can selectively catalyze the hydrogenolysis of low-density PE (LDPE), mixtures of LDPE and PP, as well as postconsumer PE, showcasing the effectiveness of this technology to upcycle realistic plastic waste. Cobalt supported on zeolites FAU, MOR, and BEA were also effective catalysts for C2-C4 hydrocarbon formation and revealed that the framework topology provides a handle to tune gas-phase selectivity.

14.
J Phys Chem Lett ; 11(3): 856-863, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935108

RESUMO

Herein, we demonstrate operando photoelectron photoion coincidence (PEPICO) spectroscopy as a pivotal technique for evidencing unprecedented mechanistic insights by isomer-selective radical detection within complex hydrocarbon-functionalization reaction networks, such as those of catalyzed propane oxychlorination and oxybromination. In particular, while the oxychlorination is surface-confined, we show that in oxybromination alkane activation follows a gas-phase reaction mechanism with evolved bromine and bromine radicals, favoring 2-propyl over 1-propyl radical formation, as evidenced by isomer-selective threshold photoelectron analysis. Furthermore, we provide new mechanistic insights into the cracking and coking pathways that are observed in oxybromination. The first entails propargyl radical formation from consecutive hydrogen abstraction of propyl radicals, ultimately yielding benzene. The second originates from C-C bond cleavage in propane to ethyl and methyl radicals, which produce CH4 and C2H4, or undergo chain-growth reactions, forming C4-C6 species.

15.
Nat Chem ; 8(8): 803-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27442287

RESUMO

Natural gas contains large volumes of light alkanes, and its abundant reserves make it an appealing feedstock for value-added chemicals and fuels. However, selectively activating the C-H bonds in these useful hydrocarbons is one of the greatest challenges in catalysis. Here we report an attractive oxybromination method for the one-step functionalization of methane under mild conditions that integrates gas-phase alkane bromination with heterogeneously catalysed HBr oxidation, a step that is usually executed separately. Catalyst-design strategies to provide optimal synergy between these two processes are discussed. Among many investigated material families, vanadium phosphate (VPO) is identified as the best oxybromination catalyst, as it provides selectivity for CH3Br up to 95% and stable operation for over 100 hours on stream. The outstanding performance of VPO is rationalized by its high activity in HBr oxidation and low propensity for methane and bromomethane oxidation. Data on the oxybromination of ethane and propane over VPO suggest that the reaction network for higher alkanes is more complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA