Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Plant Physiol ; 193(4): 2361-2380, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37619984

RESUMO

Lipid droplets (LDs) of seed tissues are storage organelles for triacylglycerols (TAGs) that provide the energy and carbon for seedling establishment. In the major route of LD degradation (lipolysis), TAGs are mobilized by lipases. However, LDs may also be degraded via lipophagy, a type of selective autophagy, which mediates LD delivery to vacuoles or lysosomes. The exact mechanisms of LD degradation and the mobilization of their content in plants remain unresolved. Here, we provide evidence that LDs are degraded via a process morphologically resembling microlipophagy in Arabidopsis (Arabidopsis thaliana) seedlings. We observed the entry and presence of LDs in the central vacuole as well as their breakdown. Moreover, we show co-localization of AUTOPHAGY-RELATED PROTEIN 8b (ATG8b) and LDs during seed germination and localization of lipidated ATG8 (ATG8-PE) to the LD fraction. We further demonstrate that structural LD proteins from the caleosin family, CALEOSIN 1 (CLO1), CALEOSIN 2 (CLO2), and CALEOSIN 3 (CLO3), interact with ATG8 proteins and possess putative ATG8-interacting motifs (AIMs). Deletion of the AIM localized directly before the proline knot disrupts the interaction of CLO1 with ATG8b, suggesting a possible role of this region in the interaction between these proteins. Collectively, we provide insights into LD degradation by microlipophagy in germinating seeds with a particular focus on the role of structural LD proteins in this process.


Assuntos
Arabidopsis , Plântula , Arabidopsis/genética , Arabidopsis/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Gotículas Lipídicas/metabolismo , Microautofagia , Plântula/genética , Plântula/metabolismo , Triglicerídeos/metabolismo
2.
Plant Cell Physiol ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37927069

RESUMO

Wounding caused by insects or abiotic factors such as wind and hail can cause severe stress for plants. Intrigued by the observation that wounding induces expression of genes involved in surface wax synthesis in a jasmonoyl-isoleucine (JA-Ile)-independent manner, the role of wax biosynthesis and respective genes upon wounding was investigated. Wax, a lipid-based barrier, protects plants both from environmental threats as well as from an uncontrolled loss of water. Its biosynthesis is described to be regulated by abscisic acid (ABA), whereas the main wound-signal is the hormone JA-Ile. We show in this study, that genes coding for enzymes of surface wax synthesis are induced upon wounding in Arabidopsis thaliana leaves in a JA-Ile-independent but ABA-dependent manner. Furthermore, the ABA-dependent transcription factor MYB96 is a key regulator of wax biosynthesis upon wounding. On the metabolite level, wound-induced wax accumulation is strongly reduced in JA-Ile-deficient plants, but this induction is only slightly decreased in ABA-reduced plants. To further analyze the ABA-dependent wound response, we conducted wounding experiments in high humidity. They show that high humidity prevents the wound-induced wax accumulation in A. thaliana leaves. Together the data presented in this study show that wound-induced wax accumulation is JA-Ile-dependent on the metabolite level, but the expression of genes coding for enzymes of wax synthesis is regulated by ABA.

3.
Plant Cell ; 32(4): 1240-1269, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32001503

RESUMO

COMPROMISED HYDROLYSIS OF TRIACYLGLYCEROLS7 (CHT7) in Chlamydomonas (Chlamydomonas reinhardtii) was previously shown to affect the transcription of a subset of genes during nitrogen (N)-replete growth and following N refeeding. Here, we show that an extensive derepression of genes involved in DNA metabolism and cell cycle-related processes, as well as downregulation of genes encoding oxidoreductases and nutrient transporters, occurs in the cht7 mutant during N deprivation. Cellular mutant phenotypes are consistent with the observed transcriptome misregulation, as cht7 cells fail to properly arrest growth, nuclear replication, and cell division following N deprivation. Reduction in cht7 colony formation following N refeeding is explained by its compromised viability during N deprivation and by the occurrence of abortive divisions during N refeeding. Surprisingly, the largely unstructured C-terminal half of CHT7 with predicted protein binding domains, but not the canonical CXC DNA binding domain, is essential for the ability of CHT7 to form stable complexes and reverse the cellular phenotypes and transcription levels in the cht7 mutant. Hence, although lacking the presumed DNA binding domain, CHT7 modulates the expression of cell cycle genes in response to N availability, which is essential for establishing an effective quiescent state and the coordinated resumption of growth following N refeeding.


Assuntos
Ciclo Celular/genética , Chlamydomonas/citologia , Chlamydomonas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Sequência de Aminoácidos , Biomarcadores/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Rastreamento de Células , DNA de Plantas/metabolismo , Meiose/genética , Modelos Biológicos , Mutação/genética , Nitrogênio/farmacologia , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Deleção de Sequência , Transcriptoma/genética
4.
Plant Cell Physiol ; 63(3): 317-325, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-34910213

RESUMO

Ceramides (Cers) and long-chain bases (LCBs) are plant sphingolipids involved in the induction of plant programmed cell death (PCD). The fatty acid hydroxylase mutant fah1 fah2 exhibits high Cer levels and moderately elevated LCB levels. Salicylic acid glucoside level is increased in this mutant, but no cell death can be detected by trypan blue staining. To determine the effect of Cers with different chain lengths, fah1 fah2 was crossed with ceramide synthase mutants longevity assurance gene one homologue1-3 (loh1, loh2 and loh3). Surprisingly, only triple mutants with loh2 show cell death detected by trypan blue staining under the selected conditions. Sphingolipid profiling revealed that the greatest differences between the triple mutant plants are in the LCB and LCB-phosphate (LCB-P) fraction. fah1 fah2 loh2 plants accumulate LCB d18:0, LCB t18:0 and LCB-P d18:0. Crossing fah1 fah2 loh2 with the salicylic acid (SA) synthesis mutant sid2-2 and with the SA signaling mutants enhanced disease susceptibility 1-2 (eds1-2) and phytoalexin deficient 4-1 (pad4-1) revealed that lesions are SA- and EDS1-dependent. These quadruple mutants also confirm that there may be a feedback loop between SA and sphingolipid metabolism as they accumulated less Cers and LCBs. In conclusion, PCD in fah1 fah2 loh2 is a SA- and EDS1-dependent phenotype, which is likely due to accumulation of LCBs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Apoptose , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxirredutases , Fenótipo , Ácido Salicílico/metabolismo , Esfingolipídeos/metabolismo
5.
Postepy Biochem ; 68(1): 46-56, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35569044

RESUMO

In plants, lipids serve as one of the major and vital cellular constituents. Neutral lipids reserves play an essential role in the plant life cycle by providing carbon and energy equivalents for periods of active metabolism. The most common form of lipid storage are triacylglycerols (TAGs) packed into specialized organelles called lipid droplets (LDs). They have been observed in diverse plant organs and tissues, like oil seeds or pollen grains. LDs consist of a core, composed mostly of TAGs, enclosed by a single layer of phospholipids that is decorated by a unique set of structural proteins. Moreover, the recent advances in exploration of LDs proteome revealed a plethora of diverse proteins interacting with LDs. This is likely the result of a highly dynamic nature of these organelles and their involvement in many diverse aspect of cellular metabolism, tightly synchronized with plant developmental programs and directly related to plant-environment interactions. In this review we summarize and discuss the current progress in understanding the role of LDs and their cargo during plants life cycle, with a special emphasis on developmental aspects.


Assuntos
Gotículas Lipídicas , Plantas , Crescimento e Desenvolvimento , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Lipídeos/análise , Plantas/metabolismo , Proteoma/metabolismo
6.
New Phytol ; 231(1): 297-314, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33720428

RESUMO

Sphingolipids are enriched in microdomains in the plant plasma membrane (PM). Hydroxyl groups in the characteristic long-chain base (LCB) moiety might be essential for the interaction between sphingolipids and sterols during microdomain formation. Investigating LCB hydroxylase mutants in Physcomitrium patens might therefore reveal the role of certain plant sphingolipids in the formation of PM subdomains. Physcomitrium patens mutants for the LCB C-4 hydroxylase S4H were generated by homologous recombination. Plants were characterised by analysing their sphingolipid and steryl glycoside (SG) profiles and by investigating different gametophyte stages. s4h mutants lost the hydroxyl group at the C-4 position of their LCB moiety. Loss of this hydroxyl group caused global changes in the moss sphingolipidome and in SG composition. Changes in membrane lipid composition may trigger growth defects by interfering with the localisation of membrane-associated proteins that are crucial for growth processes such as signalling receptors or callose-modifying enzymes. Loss of LCB-C4 hydroxylation substantially changes the P. patens sphingolipidome and reveals a key role for S4H during development of nonvascular plants. Physcomitrium patens is a valuable model for studying the diversification of plant sphingolipids. The simple anatomy of P. patens facilitates visualisation of physiological processes in biological membranes.


Assuntos
Bryopsida , Esfingolipídeos , Glucanos , Hidroxilação
7.
Plant Physiol ; 182(2): 819-839, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31740503

RESUMO

The marine microalgae Nannochloropsis oceanica (CCMP1779) is a prolific producer of oil and is considered a viable and sustainable resource for biofuel feedstocks. Nitrogen (N) availability has a strong impact on the physiological status and metabolism of microalgal cells, but the exact nature of this response is poorly understood. To fill this gap we performed transcriptomic profiling combined with cellular and molecular analyses of N. oceanica CCMP1779 during the transition from quiescence to autotrophy. N deprivation-induced quiescence was accompanied by a strong reorganization of the photosynthetic apparatus and changes in the lipid homeostasis, leading to accumulation of triacylglycerol. Cell cycle activation and re-establishment of photosynthetic activity observed in response to resupply of the growth medium with N were accompanied by a rapid degradation of triacylglycerol stored in lipid droplets (LDs). Besides observing LD translocation into vacuoles, we also provide evidence for direct interaction between the LD surface protein (NoLDSP) and AUTOPHAGY-RELATED8 (NoATG8) protein and show a role of microlipophagy in LD turnover in N. oceanica CCMP1779. This knowledge is crucial not only for understanding the fundamental mechanisms controlling the cellular energy homeostasis in microalgal cells but also for development of efficient strategies to achieve higher algal biomass and better microalgal lipid productivity.


Assuntos
Processos Autotróficos/genética , Microalgas/metabolismo , Nitrogênio/metabolismo , Nutrigenômica , Fotossíntese/genética , Estramenópilas/metabolismo , Triglicerídeos/metabolismo , Autofagia/genética , Autofagia/fisiologia , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Processos Autotróficos/fisiologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Análise por Conglomerados , Ácidos Graxos/biossíntese , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Ontologia Genética , Homeostase/genética , Homeostase/fisiologia , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/ultraestrutura , Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Microalgas/genética , Microscopia Eletrônica de Transmissão , Família Multigênica , Fotossíntese/fisiologia , Estramenópilas/genética , Vacúolos/metabolismo , Vacúolos/ultraestrutura
8.
Plant Cell ; 30(2): 447-465, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29437989

RESUMO

Photosynthesis occurs in the thylakoid membrane, where the predominant lipid is monogalactosyldiacylglycerol (MGDG). As environmental conditions change, photosynthetic membranes have to adjust. In this study, we used a loss-of-function Chlamydomonas reinhardtii mutant deficient in the MGDG-specific lipase PGD1 (PLASTID GALACTOGLYCEROLIPID DEGRADATION1) to investigate the link between MGDG turnover, chloroplast ultrastructure, and the production of reactive oxygen species (ROS) in response to different adverse environmental conditions. The pgd1 mutant showed altered MGDG abundance and acyl composition and altered abundance of photosynthesis complexes, with an increased PSII/PSI ratio. Transmission electron microscopy showed hyperstacking of the thylakoid grana in the pgd1 mutant. The mutant also exhibited increased ROS production during N deprivation and high light exposure. Supplementation with bicarbonate or treatment with the photosynthetic electron transport blocker DCMU protected the cells against oxidative stress in the light and reverted chlorosis of pgd1 cells during N deprivation. Furthermore, exposure to stress conditions such as cold and high osmolarity induced the expression of PGD1, and loss of PGD1 in the mutant led to increased ROS production and inhibited cell growth. These findings suggest that PGD1 plays essential roles in maintaining appropriate thylakoid membrane composition and structure, thereby affecting growth and stress tolerance when cells are challenged under adverse conditions.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/enzimologia , Galactolipídeos/metabolismo , Lipase/metabolismo , Tilacoides/metabolismo , Proteínas de Algas/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/fisiologia , Cloroplastos/metabolismo , Transporte de Elétrons , Meio Ambiente , Lipase/genética , Fotossíntese , Estresse Fisiológico
9.
Plant Cell ; 30(5): 1006-1022, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29666162

RESUMO

Chloroplast membranes with their unique lipid composition are crucial for photosynthesis. Maintenance of the chloroplast membranes requires finely tuned lipid anabolic and catabolic reactions. Despite the presence of a large number of predicted lipid-degrading enzymes in the chloroplasts, their biological functions remain largely unknown. Recently, we described PLASTID LIPASE1 (PLIP1), a plastid phospholipase A1 that contributes to seed oil biosynthesis. The Arabidopsis thaliana genome encodes two putative PLIP1 paralogs, which we designated PLIP2 and PLIP3. PLIP2 and PLIP3 are also present in the chloroplasts, but likely with different subplastid locations. In vitro analysis indicated that both are glycerolipid A1 lipases. In vivo, PLIP2 prefers monogalactosyldiacylglycerol as substrate and PLIP3 phosphatidylglycerol. Overexpression of PLIP2 or PLIP3 severely reduced plant growth and led to accumulation of the bioactive form of jasmonate and related oxylipins. Genetically blocking jasmonate perception restored the growth of the PLIP2/3-overexpressing plants. The expression of PLIP2 and PLIP3, but not PLIP1, was induced by abscisic acid (ABA), and plip1 plip2 plip3 triple mutants exhibited compromised oxylipin biosynthesis in response to ABA. The plip triple mutants also showed hypersensitivity to ABA. We propose that PLIP2 and PLIP3 provide a mechanistic link between ABA-mediated abiotic stress responses and oxylipin signaling.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética
10.
New Phytol ; 226(1): 170-188, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31758808

RESUMO

Sphingolipids act as regulators of programmed cell death (PCD) and the plant defence response. The homeostasis between long-chain base (LCB) and ceramide (Cer) seems to play an important role in executions of PCD. Therefore, deciphering the role of neutral ceramidases (NCER) is crucial to identify the sphingolipid compounds that trigger and execute PCD. We performed comprehensive sphingolipid and phytohormone analyses of Arabidopsis ncer mutants, combined with gene expression profiling and microscopic analyses. While ncer1 exhibited early leaf senescence (developmentally controlled PCD - dPCD) and an increase in hydroxyceramides, ncer2 showed spontaneous cell death (pathogen-triggered PCD-like - pPCD) accompanied by an increase in LCB t18:0 at 35 d, respectively. Loss of NCER1 function resulted in accumulation of jasmonoyl-isoleucine (JA-Ile) in the leaves, whereas disruption of NCER2 was accompanied by higher levels of salicylic acid (SA) and increased sensitivity to Fumonisin B1 (FB1 ). All mutants were also found to activate plant defence pathways. These data strongly suggest that NCER1 hydrolyses ceramides whereas NCER2 functions as a ceramide synthase. Our results reveal an important role of NCER in the regulation of both dPCD and pPCD via a tight connection between the phytohormone and sphingolipid levels in these two processes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Ceramidase Neutra/genética , Reguladores de Crescimento de Plantas , Esfingolipídeos
11.
Plant Cell ; 29(6): 1500-1515, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28526713

RESUMO

The import of lipids into the chloroplast is essential for photosynthetic membrane biogenesis. This process requires an ABC transporter in the inner envelope membrane with three subunits, TRIGALACTOSYLDIACYLGLYCEROL (TGD) 1, 2, and 3, named after the oligogalactolipids that accumulate in the respective Arabidopsis thaliana mutants. Unlike Arabidopsis, in the model grass Brachypodium distachyon, chloroplast lipid biosynthesis is largely dependent on imported precursors, resulting in a characteristic difference in chloroplast lipid acyl composition between the two plants. Accordingly, Arabidopsis is designated as a 16:3 (acyl carbons:double bounds) plant and Brachypodium as an 18:3 plant. Repression of TGD1 (BdTGD1) in Brachypodium affected growth without triggering oligogalactolipid biosynthesis. Moreover, expressing BdTGD1 in the Arabidopsis tgd1-1 mutant restored some phenotypes but did not reverse oligogalactolipid biosynthesis. A 27-amino acid loop (L45) is solely responsible for the incomplete functioning of BdTGD1 in Arabidopsis tgd1-1 Coevolutionary analysis and coimmunoprecipitation assays showed that the TGD1 L45 loop interacts with the mycobacterial cell entry domain of TGD2. To explain the observed differences in oligogalactolipid biosynthesis between the two species, we suggest that excess monogalactosyldiacylglycerol derived from chloroplast-derived precursors in Arabidopsis tgd1-1 is converted into oligogalactolipids, a process absent from Brachypodium with reduced TGD1 levels, which assembles monogalactosyldiacylglycerol exclusively from imported precursors.


Assuntos
Brassicaceae/metabolismo , Cloroplastos/metabolismo , Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brassicaceae/genética , Cloroplastos/genética , Galactolipídeos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/genética , Poaceae/genética
12.
Plant Cell ; 29(7): 1678-1696, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28687655

RESUMO

The lipid composition of thylakoid membranes inside chloroplasts is conserved from leaves to developing embryos. A finely tuned lipid assembly machinery is required to build these membranes during Arabidopsis thaliana development. Contrary to thylakoid lipid biosynthetic enzymes, the functions of most predicted chloroplast lipid-degrading enzymes remain to be elucidated. Here, we explore the biochemistry and physiological function of an Arabidopsis thylakoid membrane-associated lipase, PLASTID LIPASE1 (PLIP1). PLIP1 is a phospholipase A1 In vivo, PLIP1 hydrolyzes polyunsaturated acyl groups from a unique chloroplast-specific phosphatidylglycerol that contains 16:1 Δ3trans as its second acyl group. Thus far, a specific function of this 16:1 Δ3trans -containing phosphatidylglycerol in chloroplasts has remained elusive. The PLIP1 gene is highly expressed in seeds, and plip1 mutant seeds contain less oil and exhibit delayed germination compared with the wild type. Acyl groups released by PLIP1 are exported from the chloroplast, reincorporated into phosphatidylcholine, and ultimately enter seed triacylglycerol. Thus, 16:1 Δ3trans uniquely labels a small but biochemically active plastid phosphatidylglycerol pool in developing Arabidopsis embryos, which is subject to PLIP1 activity, thereby contributing a small fraction of the polyunsaturated fatty acids present in seed oil. We propose that acyl exchange involving thylakoid lipids functions in acyl export from plastids and seed oil biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Lipase/metabolismo , Fosfolipases A1/metabolismo , Óleos de Plantas/metabolismo , Plastídeos/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Lipase/genética , Fosfatidilcolinas/metabolismo , Fosfatidilgliceróis/metabolismo , Fosfolipases A1/genética , Filogenia , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/crescimento & desenvolvimento , Especificidade por Substrato , Triglicerídeos/metabolismo
14.
Plant J ; 83(6): 1097-113, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26216534

RESUMO

Nannochloropsis oceanica CCMP1779 is a marine unicellular stramenopile and an emerging reference species for basic research on oleogenic microalgae with biotechnological relevance. We investigated its physiology and transcriptome under light/dark cycles. We observed oscillations in lipid content and a predominance of cell division in the first half of the dark phase. Globally, more than 60% of the genes cycled in N. oceanica CCMP1779, with gene expression peaking at different times of the day. Interestingly, the phase of expression of genes involved in certain biological processes was conserved across photosynthetic lineages. Furthermore, in agreement with our physiological studies we found the processes of lipid metabolism and cell division enriched in cycling genes. For example, there was tight coordination of genes involved in the lower part of glycolysis, fatty acid synthesis and lipid production at dawn preceding lipid accumulation during the day. Our results suggest that diel lipid storage plays a key role for N. oceanica CCMP1779 growth under natural conditions making this alga a promising model to gain a basic mechanistic understanding of triacylglycerol production in photosynthetic cells. Our data will help the formulation of new hypotheses on the role of cyclic gene expression in cell growth and metabolism in Nannochloropsis.


Assuntos
Regulação da Expressão Gênica , Estramenópilas/fisiologia , Acetilcoenzima A/metabolismo , Carbono/metabolismo , Ciclo Celular/genética , Ciclo do Ácido Cítrico/fisiologia , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Glicólise , Metabolismo dos Lipídeos/genética , Fotoperíodo , Estramenópilas/genética , Estramenópilas/metabolismo
15.
Plant Physiol ; 169(3): 1836-47, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26419778

RESUMO

Triacylglycerol (TAG) is a storage lipid used for food purposes and as a renewable feedstock for biodiesel production. WRINKLED1 (WRI1) is a transcription factor that governs fatty acid (FA) synthesis and, indirectly, TAG accumulation in oil-storing plant tissues, and its ectopic expression has led to TAG accumulation in vegetative tissues of different dicotyledonous plants. The ectopic expression of BdWRI1 in the grass Brachypodium distachyon induced the transcription of predicted genes involved in glycolysis and FA biosynthesis, and TAG content was increased up to 32.5-fold in 8-week-old leaf blades. However, the ectopic expression of BdWRI1 also caused cell death in leaves, which has not been observed previously in dicotyledonous plants such as Arabidopsis (Arabidopsis thaliana). Lipid analysis indicated that the free FA content was 2-fold elevated in BdWRI1-expressing leaf blades of B. distachyon. The transcription of predicted genes involved in ß-oxidation was induced. In addition, linoleic FA treatment caused cell death in B. distachyon leaf blades, an effect that was reversed by the addition of the FA biosynthesis inhibitor cerulenin. Taken together, ectopic expression of BdWRI1 in B. distachyon enhances FA biosynthesis and TAG accumulation in leaves, as expected, but also leads to increased free FA content, which has cytotoxic effects leading to cell death. Thus, while WRI appears to ubiquitously affect FA biosynthesis and TAG accumulation in diverse plants, its ectopic expression can lead to undesired side effects depending on the context of the specific lipid metabolism of the respective plant species.


Assuntos
Brachypodium/fisiologia , Ácidos Graxos/biossíntese , Óleos de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Brachypodium/genética , Expressão Ectópica do Gene , Regulação da Expressão Gênica de Plantas , Homeostase , Lipídeos/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/fisiologia , Fatores de Transcrição/genética , Triglicerídeos/metabolismo
16.
Electrophoresis ; 36(7-8): 1043-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25640071

RESUMO

Olive (Olea europaea L.) pollen is a major health concern in the Mediterranean countries and some olive growing regions in America and Australia. The molecular variability of pollen allergens constitutes a handicap for commercial extract standardization, which is the base of current diagnosis and vaccination procedures. In this paper, we report a time-saving and plant material saving multiplex detection method for the rapid and simultaneous analysis of Ole e 1, Ole e 2, and Ole e 5 allergen polymorphism on a single blot. This method combines high-resolution 2DE techniques with high-sensitive fluorescence-based detection methods. Using this strategy, we were capable to identify a higher number of allergen forms compared with classical 1D approach. The use of fluorescent probes and the increased resolution of 2D blots avoided overlapping effects, and allow estimating the amount of individual allergen forms. In addition, the pattern and identity of the IgE-reactive proteins of either a population or individual patients allergic to olive pollen was also effortlessly determined in a single additional step. This flexible method might be extended to a higher number of olive allergens and cultivars, and is also applicable to other allergogenic plant species and sources.


Assuntos
Alérgenos/análise , Western Blotting/métodos , Pólen , Rinite Alérgica Sazonal/imunologia , Antígenos de Plantas/análise , Eletroforese em Gel Bidimensional/métodos , Fluorescência , Corantes Fluorescentes , Humanos , Imunoglobulina E/imunologia , Proteínas de Plantas/análise , Pólen/efeitos adversos , Pólen/imunologia
17.
Electrophoresis ; 35(18): 2681-5, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24888349

RESUMO

Standardization of protein extracts for clinical purposes represents an important task in order to maintain adequate reactivity, presence of the relevant allergens, and safety among other factors. The main objective of this work was to explore the potential use of a chip-based automated CE system commercially available to analyze several of the most common forms of allergenic extracts from olive pollen used in allergy clinics. These include experimental extracts prepared from olive pollens, in-house reference extracts, extracts designed for skin prick test assays, and a panel of vaccine variants aimed to specific immunotherapy. As a major conclusion of the study, chip-based CE allowed in all cases to determine accurate protein profiles with different degrees of sensitivity, where several allergens (particularly the major olive pollen allergen Ole e 1) were easily recognized. Moreover, several purified allergens were also analyzed by this method, and proposed as specific standards for different purposes. In the present condition, the method can only provide the protein profile of the extracts with respect to a preestablished standard extract, but not allergen identification. However, these and other future developments and applications are discussed.


Assuntos
Eletroforese Capilar/métodos , Olea/química , Extratos Vegetais/química , Pólen/química
18.
J Exp Bot ; 65(1): 103-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24170742

RESUMO

The major seed storage reserves in oilseeds are accumulated in protein bodies and oil bodies, and serve as an energy, carbon, and nitrogen source during germination. Here, the spatio-temporal relationships between protein bodies and several key enzymes (phospholipase A, lipase, and lipoxygenase) involved in storage lipid mobilization in cotyledon cells was analysed during in vitro seed germination. Enzyme activities were assayed in-gel and their cellular localization were determined using microscopy techniques. At seed maturity, phospholipase A and triacylglycerol lipase activities were found exclusively in protein bodies. However, after seed imbibition, these activities were shifted to the cytoplasm and the surface of the oil bodies. The activity of neutral lipases was detected by using α-naphthyl palmitate and it was associated mainly with protein bodies during the whole course of germination. This pattern of distribution was highly similar to the localization of neutral lipids, which progressively appeared in protein bodies. Lipoxygenase activity was found in both the protein bodies and on the surface of the oil bodies during the initial phase of seed germination. The association of lipoxygenase with oil bodies was temporally correlated with the appearance of phospholipase A and lipase activities on the surface of oil bodies. It is concluded that protein bodies not only serve as simple storage structures, but are also dynamic and multifunctional organelles directly involved in storage lipid mobilization during olive seed germination.


Assuntos
Lipase/metabolismo , Lipoxigenase/metabolismo , Olea/enzimologia , Fosfolipases/metabolismo , Óleos de Plantas/metabolismo , Cotilédone/citologia , Cotilédone/enzimologia , Citoplasma/enzimologia , Germinação , Metabolismo dos Lipídeos , Olea/ultraestrutura , Organelas/enzimologia , Óleos de Plantas/análise , Proteínas de Plantas/metabolismo , Transporte Proteico , Sementes/enzimologia , Sementes/ultraestrutura
19.
Planta ; 237(1): 305-19, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23065053

RESUMO

Cell wall components in the pistil are involved in cell-cell recognition, nutrition and regulation of pollen tube growth. The aim of this work was to study the level, whole-organ distribution, and subcellular localization of pectins and arabinogalactan proteins (AGPs) in the olive developing pistil. Western blot analyses and immunolocalization with fluorescence and electron microscopy were carried out using a battery of antibodies recognizing different types of pectin epitopes (JIM7, JIM5, LM5, and LM6) and one anti-AGPs antibody (JIM13). In the olive pistil, highest levels of acid esterified and de-esterified pectins were observed at pollination. Moreover, pollination was accompanied by a slight decrease of the galactose-rich pectins pool, whereas arabinose-rich pectins were more abundant at that time. An increased expression of AGPs was also observed during pollination, in comparison to the pistil at the pre-anthesis stage. After pollination, the levels of pectins and AGPs declined significantly. Inmunofluorescence localization of pectins showed their different localization in the olive pistil. Pectins with galactose residues were located mainly in the cortical zones of the pistil, similar to the neutral pectins, which were found in the parenchyma and epidermis. In turn, the neutral pectins, which contain arabinose residues and AGPs, were localized predominantly in the stigmatic exudate, in the cell wall of secretory cells of the stigma, as well as in the transmitting tissue of the pistil during the pollination period. The differences in localization of pectins and AGPs are discussed in relation to their roles during olive pistil developmental course.


Assuntos
Flores/metabolismo , Mucoproteínas/metabolismo , Olea/metabolismo , Pectinas/metabolismo , Arabinose/metabolismo , Western Blotting , Parede Celular/metabolismo , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Galactose/metabolismo , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Olea/crescimento & desenvolvimento , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Polinização , Fatores de Tempo
20.
J Exp Bot ; 64(1): 293-302, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23132905

RESUMO

In some plants, pollen grains accumulate storage lipids that serve as energy supply during germination. Here, three enzymes involved in early steps of oil body mobilization in the male gametophyte were functionally characterized for the first time. The effect of extracellular sugars on pollen performance and oil body dynamics was also analysed. Olive pollen oil bodies showed phospholipase A, lipase, and lipoxygenase activities on their surface. Enzyme activity levels increased during germination with a maximum after 3h. Removal of extracellular sugars from the germination medium did not affect pollen performance but increased enzyme activity rates and sped up oil body mobilization. Inhibitors seriously hampered pollen germination and pollen tube growth, leading to a characteristic accumulation of oil bodies in the germinative aperture. It can be concluded that storage lipids are sufficient for proper olive pollen germination. A lipase and a lipoxygenase are likely involved in oil body mobilization. Extracellular sugars may modulate their function, while a phospholipase A may promote their access to the storage lipids.


Assuntos
Germinação , Olea/crescimento & desenvolvimento , Óleos de Plantas/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Meios de Cultura/farmacologia , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Germinação/efeitos dos fármacos , Lipase/metabolismo , Lipoxigenase/metabolismo , Olea/citologia , Olea/efeitos dos fármacos , Olea/enzimologia , Fosfolipases/metabolismo , Tubo Polínico/efeitos dos fármacos , Tubo Polínico/enzimologia , Tubo Polínico/ultraestrutura , Transporte Proteico/efeitos dos fármacos , Coloração e Rotulagem , Sacarose/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA