Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Photosynth Res ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907135

RESUMO

The ring-like peripheral light-harvesting complex 2 (LH2) expressed by many phototrophic purple bacteria is a popular model system in biological light-harvesting research due to its robustness, small size, and known crystal structure. Furthermore, the availability of structural variants with distinct electronic structures and optical properties has made this group of light harvesters an attractive testing ground for studies of structure-function relationships in biological systems. LH2 is one of several pigment-protein complexes for which a link between functionality and effects such as excitonic coherence and vibronic coupling has been proposed. While a direct connection has not yet been demonstrated, many such interactions are highly sensitive to resonance conditions, and a dependence of intra-complex dynamics on detailed electronic structure might be expected. To gauge the sensitivity of energy-level structure and relaxation dynamics to naturally occurring structural changes, we compare the photo-induced dynamics in two structurally distinct LH2 variants. Using polarization-controlled 2D electronic spectroscopy at cryogenic temperatures, we directly access information on dynamic and static disorder in the complexes. The simultaneous optimal spectral and temporal resolution of these experiments further allows us to characterize the ultrafast energy relaxation, including exciton transport within the complexes. Despite the variations in PPC molecular structure manifesting as clear differences in electronic structure and disorder, the energy-transport and-relaxation dynamics remain remarkably similar. This indicates that the light-harvesting functionality of purple bacteria within a single LH2 complex is highly robust to structural perturbations and likely does not rely on finely tuned electronic- or electron-vibrational resonance conditions.

2.
Opt Express ; 31(7): 11806-11819, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37155808

RESUMO

Any ultrafast optical spectroscopy experiment is usually accompanied by the necessary routine of ultrashort-pulse characterization. The majority of pulse characterization approaches solve either a one-dimensional (e.g., via interferometry) or a two-dimensional (e.g., via frequency-resolved measurements) problem. Solution of the two-dimensional pulse-retrieval problem is generally more consistent due to the problem's over-determined nature. In contrast, the one-dimensional pulse-retrieval problem, unless constraints are added, is impossible to solve unambiguously as ultimately imposed by the fundamental theorem of algebra. In cases where additional constraints are involved, the one-dimensional problem may be possible to solve, however, existing iterative algorithms lack generality, and often stagnate for complicated pulse shapes. Here we use a deep neural network to unambiguously solve a constrained one-dimensional pulse-retrieval problem and show the potential of fast, reliable and complete pulse characterization using interferometric correlation time traces determined by the pulses with partial spectral overlap.

3.
J Chem Phys ; 158(10): 104104, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36922135

RESUMO

In polaritons, the properties of matter are modified by mixing the molecular transitions with light modes inside a cavity. Resultant hybrid light-matter states exhibit energy level shifts, are delocalized over many molecular units, and have a different excited-state potential energy landscape, which leads to modified exciton dynamics. Previously, non-Hermitian Hamiltonians have been derived to describe the excited states of molecules coupled to surface plasmons (i.e., plexcitons), and these operators have been successfully used in the description of linear and third order optical response. In this article, we rigorously derive non-Hermitian Hamiltonians in the response function formalism of nonlinear spectroscopy by means of Feshbach operators and apply them to explore spectroscopic signatures of plexcitons. In particular, we analyze the optical response below and above the exceptional point that arises for matching transition energies for plasmon and molecular components and study their decomposition using double-sided Feynman diagrams. We find a clear distinction between interference and Rabi splitting in linear spectroscopy and a qualitative change in the symmetry of the line shape of the nonlinear signal when crossing the exceptional point. This change corresponds to one in the symmetry of the eigenvalues of the Hamiltonian. Our work presents an approach for simulating the optical response of sublevels within an electronic system and opens new applications of nonlinear spectroscopy to examine the different regimes of the spectrum of non-Hermitian Hamiltonians.

4.
Opt Express ; 30(13): 22817-22818, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36224971

RESUMO

We present an erratum regarding the calculated phase matching bandwidths for achromatic second harmonic generation presented in our paper [Opt. Express29, 25593 (2021)10.1364/OE.425053].

5.
J Chem Phys ; 157(1): 014201, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803814

RESUMO

Advances in ultrafast spectroscopy can provide access to dynamics involving nontrivial quantum correlations and their evolutions. In coherent 2D spectroscopy, the oscillatory time dependence of a signal is a signature of such quantum dynamics. Here, we study such beating signals in electronic coherent 2D spectroscopy of CdSe quantum dots (CdSe QDs) at 77 K. The beating signals are analyzed in terms of their positive and negative Fourier components. We conclude that the beatings originate from coherent LO-phonons of CdSe QDs. No evidence for the QD size dependence of the LO-phonon frequency was identified.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Compostos de Selênio , Compostos de Cádmio/química , Pontos Quânticos/química , Compostos de Selênio/química , Análise Espectral , Temperatura
6.
Opt Express ; 29(16): 25593-25604, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614887

RESUMO

The generation and characterization of ultrashort laser pulses in the deep ultraviolet spectral region is challenging, especially at high pulse repetition rates and low pulse energies. Here, we combine achromatic second harmonic generation and adaptive pulse compression for the efficient generation of sub-10 fs deep ultraviolet laser pulses at a laser repetition rate of 200 kHz. Furthermore, we simplify the pulse compression scheme and reach pulse durations of ≈10 fs without the use of adaptive optics. We demonstrate straight-forward tuning from 250 to 320 nm, broad pulse spectra of up to 63 nm width, excellent stability and a high robustness against misalignment. These features make the approach appealing for numerous spectroscopy and imaging applications.

7.
J Chem Phys ; 154(11): 115102, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33752351

RESUMO

Optical nonlinear spectroscopies carry a high amount of information about the systems under investigation; however, as they report polarization signals, the resulting spectra are often congested and difficult to interpret. To recover the landscape of energy states and physical processes such as energy and electron transfer, a clear interpretation of the nonlinear signals is prerequisite. Here, we focus on the interpretation of the electrochromic band-shift signal, which is generated when an internal electric field is established in the system following optical excitation. Whereas the derivative shape of the band-shift signal is well understood in transient absorption spectroscopy, its emergence in two-dimensional electronic spectroscopy (2DES) has not been discussed. In this work, we employed 2DES to follow the dynamic band-shift signal in reaction centers of purple bacteria Rhodobacter sphaeroides at 77 K. The prominent two-dimensional derivative-shape signal appears with the characteristic formation time of the charge separated state. To explain and characterize the band-shift signal, we use expanded double-sided Feynman diagram formalism. We propose to distinguish two types of Feynman diagrams that lead to signals with negative amplitude: excited state absorption and re-excitation. The presented signal decomposition and modeling analysis allows us to recover precise electrochromic shifts of accessory bacteriochlorophylls, identify additional signals in the B band range, and gain a further insight into the electron transfer mechanism. In a broader perspective, expanded Feynman diagram formalism will allow for interpretation of all 2D signals in a clearer and more intuitive way and therefore facilitate studying the underlying photophysics.


Assuntos
Elétrons , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/enzimologia , Análise Espectral , Complexo de Proteínas do Centro de Reação Fotossintética/química
8.
J Chem Phys ; 154(4): 045102, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33514092

RESUMO

Over the last several decades, the light-harvesting protein complexes of purple bacteria have been among the most popular model systems for energy transport in excitonic systems in the weak and intermediate intermolecular coupling regime. Despite this extensive body of scientific work, significant questions regarding the excitonic states and the photo-induced dynamics remain. Here, we address the low-temperature electronic structure and excitation dynamics in the light-harvesting complex 2 of Rhodopseudomonas acidophila by two-dimensional electronic spectroscopy. We find that, although at cryogenic temperature energy relaxation is very rapid, exciton mobility is limited over a significant range of excitation energies. This points to the presence of a sub-200 fs, spatially local energy-relaxation mechanism and suggests that local trapping might contribute substantially more in cryogenic experiments than under physiological conditions where the thermal energy is comparable to or larger than the static disorder.


Assuntos
Beijerinckiaceae/química , Complexos de Proteínas Captadores de Luz/química , Teoria Quântica , Elétrons , Transferência de Energia , Análise Espectral , Temperatura
9.
Opt Express ; 28(25): 37752-37757, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379604

RESUMO

Michelson interferometers have been routinely used in various applications ranging from testing optical components to interferometric time-resolved spectroscopy measurements. Traditionally, plate beamsplitters are employed to redistribute radiation between the two arms of an interferometer. However, such an interferometer is susceptible to relative phase fluctuations between the two arms resulting from vibrations of the beamsplitter. This drawback is circumvented in diffraction-grating-based interferometers, which are especially beneficial in applications where highly stable delays between the replica beams are required. In the vast majority of grating-based interferometers, reflective diffraction gratings are used as beamsplitters. Their diffraction efficiency, however, is strongly wavelength dependent. Therefore transmission-grating interferometers can be advantageous for spectroscopy methods, since they can provide high diffraction efficiency over a wide spectral range. Here, we present and characterize a transmission grating-based Michelson interferometer, which is practically dispersion-free, has intrinsically high symmetry and stability and moderate throughput efficiency, and is promising for a wide range of applications.

10.
Opt Express ; 27(16): 22970-22982, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510581

RESUMO

Broadband femtosecond laser pulses manipulated by pulse shapers based on a liquid crystal spatial light modulator (LC-SLM) inevitably experience periodic spectral distortions due to Fabry-Perot interference effects within the LC-SLM. We present a method, applicable to phase and amplitude pulse shapers based on dual LC-SLMs, that enables the calibration and suppression of the undesired spectral intensity modulations in a non-iterative fashion. We demonstrate that the method considerably improves the amplitude shaping fidelity of phase and amplitude pulse shapers without compromising the phase shaping properties.

11.
Opt Express ; 27(7): 10234-10246, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045167

RESUMO

Femtosecond spectroscopy is an important tool used for tracking rapid photoinduced processes in a variety of materials. To spatially map the processes in a sample would substantially expand the method's capabilities. This is, however, difficult to achieve, due to the necessity of using low-noise detection and maintaining feasible data acquisition time. Here, we demonstrate realization of an imaging pump-probe setup, featuring sub-100 fs temporal resolution, by using a straightforward modification of a standard pump-probe technique, which uses a randomly structured probe beam. The structured beam, made by a diffuser, enabled us to computationally reconstruct the maps of transient absorption dynamics based on the concept of compressed sensing. We demonstrate the setup's functionality in two proof-of-principle experiments, where we achieve spatial resolution of 20 µm. The presented concept provides a feasible route to imaging, by using the pump-probe technique and ultrafast spectroscopy in general.

12.
J Chem Phys ; 151(2): 024201, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31301711

RESUMO

Two-dimensional electronic spectroscopy, and especially the polarization-controlled version of it, is the cutting edge technique for disentangling various types of coherences in molecules and molecular aggregates. In order to evaluate the electronic coherences, which often decay on a 100 fs time scale, the early population times have to be included in the analysis. However, signals in this region are typically plagued by several artifacts, especially in the unavoidable pulse overlap region. In this paper, we show that, in the case of polarization-controlled two-dimensional spectroscopy experiment, the early-time dynamics can be dominated by the "incorrect" pulse ordering signals. These signals can affect kinetics at positive times well beyond the pulse overlap region, especially when the "correct" pulse ordering signals are much weaker. Moreover, the "incorrect" pulse ordering contributions are oscillatory and overlap with the spectral signatures of energy transfer, which may lead to misinterpretation of "incorrect" pulse ordering signals for fast-decaying coherences.

13.
Opt Express ; 26(25): 32900-32907, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30645450

RESUMO

Coherent phenomena have been widely suggested to play a role in efficient photosynthetic light harvesting and charge separation processes. To substantiate these ideas, separation of intramolecular vibrational coherences from purely electronic or mixed vibronic coherences is essential. To this end, polarization-controlled two-dimensional electronic spectroscopy has been shown to provide an effective selectivity. We show that analogous discrimination can be achieved in a transient grating experiment by employing the double-crossed polarization scheme. This is demonstrated in a study of bacterial reaction centers. Significantly faster acquisition times of these experiments make longer population time scans feasible, thereby achieving improved frequency resolution and allowing for accurate extraction of coherence frequencies and dephasing times. These parameters are crucial for the discussion on relevance of the measured coherences to energy or electron transfer phenomena.

14.
Biochim Biophys Acta Bioenerg ; 1858(4): 297-307, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28161327

RESUMO

Time-resolved multi-pulse methods were applied to investigate the excited state dynamics, the interstate couplings, and the excited state energy transfer pathways between the light-harvesting pigments in peridinin-chlorophyll a-protein (PCP). The utilized pump-dump-probe techniques are based on perturbation of the regular PCP energy transfer pathway. The PCP complexes were initially excited with an ultrashort pulse, resonant to the S0→S2 transition of the carotenoid peridinin. A portion of the peridinin-based emissive intramolecular charge transfer (ICT) state was then depopulated by applying an ultrashort NIR pulse that perturbed the interaction between S1 and ICT states and the energy flow from the carotenoids to the chlorophylls. The presented data indicate that the peridinin S1 and ICT states are spectrally distinct and coexist in an excited state equilibrium in the PCP complex. Moreover, numeric analysis of the experimental data asserts ICT→Chl-a as the main energy transfer pathway in the photoexcited PCP systems.


Assuntos
Carotenoides/química , Clorofila/química , Transferência de Energia , Clorofila A , Cinética , Análise Espectral
15.
Biochim Biophys Acta ; 1847(2): 241-247, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25445318

RESUMO

Fucoxanthin-chlorophyll protein (FCP) is the key molecular complex performing the light-harvesting function in diatoms, which, being a major group of algae, are responsible for up to one quarter of the total primary production on Earth. These photosynthetic organisms contain an unusually large amount of the carotenoid fucoxanthin, which absorbs the light in the blue-green spectral region and transfers the captured excitation energy to the FCP-bound chlorophylls. Due to the large number of fucoxanthins, the excitation energy transfer cascades in these complexes are particularly tangled. In this work we present the two-color two-dimensional electronic spectroscopy experiments on FCP. Analysis of the data using the modified decay associated spectra permits a detailed mapping of the excitation frequency dependent energy transfer flow with a femtosecond time resolution.


Assuntos
Clorofila/química , Diatomáceas/metabolismo , Xantofilas/química , Transferência de Energia , Análise Espectral
16.
Phys Chem Chem Phys ; 18(37): 26199-26204, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27722564

RESUMO

Colloidal quantum dots (QDs) have attracted interest as materials for opto-electronic applications, wherein their efficient energy use requires the understanding of carrier relaxation. In QDs capped by bifunctional thiols, used to attach the QDs to a surface, the relaxation is complicated by carrier traps. Using 2D spectroscopy at 77 K, we follow excitations in thiol-capped CdSe QDs with state specificity and high time resolution. We unambiguously identify the lowest state as an optically allowed hole trap, and identify an electron trap with excited-state absorption. The presence of traps changes the initial dynamics entirely by offering a different relaxation channel. 2D electronic spectroscopy enables us to pinpoint correlations between states and to easily separate relaxation from different starting states. We observe the direct rapid trapping of 1S3/2, 2S3/2, and 1S1/2 holes, and several competing electron relaxation processes from the 1Pe state.

17.
J Chem Phys ; 142(21): 212414, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26049434

RESUMO

Energy transfer processes and coherent phenomena in the fucoxanthin-chlorophyll protein complex, which is responsible for the light harvesting function in marine algae diatoms, were investigated at 77 K by using two-dimensional electronic spectroscopy. Experiments performed on femtosecond and picosecond timescales led to separation of spectral dynamics, witnessing evolutions of coherence and population states of the system in the spectral region of Qy transitions of chlorophylls a and c. Analysis of the coherence dynamics allowed us to identify chlorophyll (Chl) a and fucoxanthin intramolecular vibrations dominating over the first few picoseconds. Closer inspection of the spectral region of the Qy transition of Chl c revealed previously not identified, mutually non-interacting chlorophyll c states participating in femtosecond or picosecond energy transfer to the Chl a molecules. Consideration of separated coherent and incoherent dynamics allowed us to hypothesize the vibrations-assisted coherent energy transfer between Chl c and Chl a and the overall spatial arrangement of chlorophyll molecules.


Assuntos
Clorofila/química , Complexos de Proteínas Captadores de Luz/química , Termodinâmica , Transferência de Energia , Análise Espectral
18.
Phys Chem Chem Phys ; 16(21): 9930-9, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24430275

RESUMO

Light-harvesting in photosynthesis is determined by the excitonic interactions in disordered antennae and the coupling of collective electronic excitations to fast nuclear motions, producing efficient energy transfer with a complicated interplay between exciton and vibrational coherences. Two-dimensional electronic spectroscopy (2DES) is a powerful tool to study the presence of these coherences in photosynthetic complexes. However, the unambiguous assignment of the nature of the observed coherences is still under debate. In this paper we apply 2DES to an excitonically coupled bacteriochlorophyll dimer, the B820 subunit of the light harvesting complex 1 (LH1-RC) of R. rubrum G9. Fourier analysis of the measured kinetics and modeling of the spectral responses in a complete basis of electronic and vibrational states allow us to distinguish between pure vibrational, mixed exciton-vibrational (vibronic), and predominantly exciton coherences. The mixed coherences have been found in a wide range of oscillation frequencies, whereas exciton coherences give the biggest contributions for the frequencies in the 400-550 cm(-1) range, corresponding to the exciton splitting energy of the B820 dimer. Significant exciton coherences are also present at higher frequencies, i.e., up to 800 cm(-1), which are determined by realizations of the disorder with a large energy gap between the two pigments (which increases the apparent value of the exciton splitting). Although the B820 dimer is a model system, the approach presented here represents a basis for further analyses of more complicated systems, providing a tool for studying the interplay between electronic and vibrational coherences in disordered photosynthetic antennae and reaction centres.


Assuntos
Bacterioclorofilas/química , Análise Espectral/métodos , Dimerização , Modelos Químicos , Teoria Quântica , Vibração
19.
J Chem Phys ; 140(11): 115103, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24655205

RESUMO

Coherent two-dimensional (2D) spectroscopy at 80 K was used to study chlorosomes isolated from green sulfur bacterium Chlorobaculum tepidum. Two distinct processes in the evolution of the 2D spectrum are observed. The first being exciton diffusion, seen in the change of the spectral shape occurring on a 100-fs timescale, and the second being vibrational coherences, realized through coherent beatings with frequencies of 91 and 145 cm(-1) that are dephased during the first 1.2 ps. The distribution of the oscillation amplitude in the 2D spectra is independent of the evolution of the 2D spectral shape. This implies that the diffusion energy transfer process does not transfer coherences within the chlorosome. Remarkably, the oscillatory pattern observed in the negative regions of the 2D spectrum (dominated by the excited state absorption) is a mirror image of the oscillations found in the positive part (originating from the stimulated emission and ground state bleach). This observation is surprising since it is expected that coherences in the electronic ground and excited states are generated with the same probability and the latter dephase faster in the presence of fast diffusion. Moreover, the relative amplitude of coherent beatings is rather high compared to non-oscillatory signal despite the reported low values of the Huang-Rhys factors. The origin of these effects is discussed in terms of the vibronic and Herzberg-Teller couplings.


Assuntos
Chlorobium/química , Cromossomos Bacterianos/química , Difusão , Transferência de Energia
20.
J Phys Chem Lett ; 14(17): 4078-4083, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37120843

RESUMO

Due to desirable optical properties, such as efficient luminescence and large Stokes shift, DNA-templated silver nanoclusters (DNA-AgNCs) have received significant attention over the past decade. Nevertheless, the excited-state dynamics of these systems are poorly understood, as studies of the processes ultimately leading to a fluorescent state are scarce. Here we investigate the early time relaxation dynamics of a 16-atom silver cluster (DNA-Ag16NC) featuring NIR emission in combination with an unusually large Stokes shift of over 5000 cm-1. We follow the photoinduced dynamics of DNA-Ag16NC on time ranges from tens of femtoseconds to nanoseconds using a combination of ultrafast optical spectroscopies, and extract a kinetic model to clarify the physical picture of the photoinduced dynamics. We expect the obtained model to contribute to guiding research efforts toward elucidating the electronic structure and dynamics of these novel objects and their potential applications in fluorescence-based labeling, imaging, and sensing.


Assuntos
Nanopartículas Metálicas , Prata , Prata/química , Nanopartículas Metálicas/química , Espectrometria de Fluorescência/métodos , DNA/química , Luminescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA