Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232835

RESUMO

Tauopathies are a group of neurodegenerative diseases characterized by the hyperphosphorylation and deposition of tau proteins in the brain. In Alzheimer's disease, and other related tauopathies, the pattern of tau deposition follows a stereotypical progression between anatomically connected brain regions. Increasing evidence suggests that tau behaves in a "prion-like" manner, and that seeding and spreading of pathological tau drive progressive neurodegeneration. Although several advances have been made in recent years, the exact cellular and molecular mechanisms involved remain largely unknown. Since there are no effective therapies for any tauopathy, there is a growing need for reliable experimental models that would provide us with better knowledge and understanding of their etiology and identify novel molecular targets. In this review, we will summarize the development of cellular models for modeling tau pathology. We will discuss their different applications and contributions to our current understanding of the "prion-like" nature of pathological tau.


Assuntos
Doença de Alzheimer , Príons , Tauopatias , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Humanos , Príons/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo
2.
ACS Appl Mater Interfaces ; 15(14): 17444-17458, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37001059

RESUMO

Chronic, nonhealing wounds in the form of diabetic foot ulcers (DFUs) are a major complication for diabetic patients. The inability of a DFU to heal appropriately leads to an open wound with a high risk of infection. Current standards of care fail to fully address either the underlying defective wound repair mechanism or the risk of microbial infection. Thus, it is clear that novel approaches are needed. One such approach is the use of multifunctional biomaterials as platforms to direct and promote wound healing. In this study, a biomimetic, bilayered antimicrobial collagen-based scaffold was developed to deal with the etiology of DFUs. An epidermal, antimicrobial collagen/chitosan film for the prevention of wound infection was combined with a dermal collagen-glycosaminoglycan scaffold, which serves to support angiogenesis in the wound environment and ultimately accelerate wound healing. Biophysical and biological characterization identified an 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide cross-linked bilayered scaffold to have the highest structural stability with similar mechanical properties to products on the market, exhibiting a similar structure to native skin, successfully inhibiting the growth and infiltration of Staphylococcus aureus and supporting the proliferation of epidermal cells on its surface. This bilayered scaffold also demonstrated the ability to support the proliferation of key cell types involved in vascularization, namely, induced pluripotent stem cell derived endothelial cells and supporting stromal cells, with early signs of organization of these cells into vascular structures, showing great promise for the promotion of angiogenesis. Taken together, the results indicate that the bilayered scaffold is an excellent candidate for enhancement of diabetic wound healing by preventing wound infection and supporting angiogenesis.


Assuntos
Anti-Infecciosos , Cicatrização , Humanos , Células Endoteliais , Biomimética , Colágeno/farmacologia , Colágeno/química , Anti-Infecciosos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA