Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Eukaryot Microbiol ; 71(1): e13005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37877451

RESUMO

Spiny brown dinoflagellate cysts are commonly used as sea-ice indicators in the Arctic, but their biological affinities are not well known. We present the first indication of hitherto temperate Protoperidinium tricingulatum in the Arctic based on single-cell LSU rDNA sequencing from sediments of the Disko Bay-Vaigat Sound, West Greenland. The morphological similarity of the sequenced cyst morphotype to the sea-ice indicator Islandinium? cezare morphotype 1 is striking. The morphology of the isolated cysts, as well as those observed in the total cyst assemblage following standard palynological preparation, both resemble either I.? cezare morphotype 1 or P. tricingulatum, suggesting that the specimens may in fact be close morphological variants of the same species. In addition, nine LSU rDNA sequences were obtained from morphological variants assigned to Islandinium minutum s.l.: including both subspecies minutum and subspecies barbatum. The two subspecies could not be differentiated based on partial LSU rDNA sequencing. Overall, Arctic spiny brown dinoflagellate cyst species may be morphologically more diverse and taxonomically more complex than shown earlier and further genetic and morphological studies are needed. Importantly, the value of cysts as palaeoecological indicators depends on a sound understanding of their biological affinity and taxonomy.


Assuntos
Dinoflagellida , Groenlândia , DNA Ribossômico/genética , Sedimentos Geológicos , Regiões Árticas
2.
Nat Commun ; 14(1): 1650, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36964154

RESUMO

Sea ice is a key factor for the functioning and services provided by polar marine ecosystems. However, ecosystem responses to sea-ice loss are largely unknown because time-series data are lacking. Here, we use shotgun metagenomics of marine sedimentary ancient DNA off Kamchatka (Western Bering Sea) covering the last ~20,000 years. We traced shifts from a sea ice-adapted late-glacial ecosystem, characterized by diatoms, copepods, and codfish to an ice-free Holocene characterized by cyanobacteria, salmon, and herring. By providing information about marine ecosystem dynamics across a broad taxonomic spectrum, our data show that ancient DNA will be an important new tool in identifying long-term ecosystem responses to climate transitions for improvements of ocean and cryosphere risk assessments. We conclude that continuing sea-ice decline on the northern Bering Sea shelf might impact on carbon export and disrupt benthic food supply and could allow for a northward expansion of salmon and Pacific herring.


Assuntos
DNA Antigo , Ecossistema , Camada de Gelo , Clima , Sedimentos Geológicos , Regiões Árticas , Oceanos e Mares
3.
Mol Ecol Resour ; 21(3): 801-815, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33319428

RESUMO

Siberian larch (Larix Mill.) forests dominate vast areas of northern Russia and contribute important ecosystem services to the world. It is important to understand the past dynamics of larches in order to predict their likely response to a changing climate in the future. Sedimentary ancient DNA extracted from lake sediment cores can serve as archives to study past vegetation. However, the traditional method of studying sedimentary ancient DNA-metabarcoding-focuses on small fragments, which cannot resolve Larix to species level nor allow a detailed study of population dynamics. Here, we use shotgun sequencing and hybridization capture with long-range PCR-generated baits covering the complete Larix chloroplast genome to study Larix populations from a sediment core reaching back to 6700 years from the Taymyr region in northern Siberia. In comparison with shotgun sequencing, hybridization capture results in an increase in taxonomically classified reads by several orders of magnitude and the recovery of complete chloroplast genomes of Larix. Variation in the chloroplast reads corroborates an invasion of Larix gmelinii into the range of Larix sibirica before 6700 years ago. Since then, both species have been present at the site, although larch populations have decreased with only a few trees remaining in what was once a forested area. This study demonstrates for the first time that hybridization capture applied directly to ancient DNA of plants extracted from lake sediments can provide genome-scale information and is a viable tool for studying past genomic changes in populations of single species, irrespective of a preservation as macrofossil.


Assuntos
DNA Antigo , Genoma de Cloroplastos , Larix , Hibridização de Ácido Nucleico , DNA de Plantas/genética , Florestas , Sedimentos Geológicos , Lagos , Larix/genética , Hibridização de Ácido Nucleico/métodos , Sibéria
4.
Ecol Evol ; 11(5): 2173-2193, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33717447

RESUMO

Climate warming alters plant composition and population dynamics of arctic ecosystems. In particular, an increase in relative abundance and cover of deciduous shrub species (shrubification) has been recorded. We inferred genetic variation of common shrub species (Alnus alnobetula, Betula nana, Salix sp.) through time. Chloroplast genomes were assembled from modern plants (n = 15) from the Siberian forest-tundra ecotone. Sedimentary ancient DNA (sedaDNA; n = 4) was retrieved from a lake on the southern Taymyr Peninsula and analyzed by metagenomics shotgun sequencing and a hybridization capture approach. For A. alnobetula, analyses of modern DNA showed low intraspecies genetic variability and a clear geographical structure in haplotype distribution. In contrast, B. nana showed high intraspecies genetic diversity and weak geographical structure. Analyses of sedaDNA revealed a decreasing relative abundance of Alnus since 5,400 cal yr BP, whereas Betula and Salix increased. A comparison between genetic variations identified in modern DNA and sedaDNA showed that Alnus variants were maintained over the last 6,700 years in the Taymyr region. In accordance with modern individuals, the variants retrieved from Betula and Salix sedaDNA showed higher genetic diversity. The success of the hybridization capture in retrieving diverged sequences demonstrates the high potential for future studies of plant biodiversity as well as specific genetic variation on ancient DNA from lake sediments. Overall, our results suggest that shrubification has species-specific trajectories. The low genetic diversity in A. alnobetula suggests a local population recruitment and growth response of the already present communities, whereas the higher genetic variability and lack of geographical structure in B. nana may indicate a recruitment from different populations due to more efficient seed dispersal, increasing the genetic connectivity over long distances.

5.
Nat Commun ; 12(1): 2995, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016962

RESUMO

Studies along elevational gradients worldwide usually find the highest plant taxa richness in mid-elevation forest belts. Hence, an increase in upper elevation diversity is expected in the course of warming-related treeline rise. Here, we use a time-series approach to infer past taxa richness from sedimentary ancient DNA from the south-eastern Tibetan Plateau over the last ~18,000 years. We find the highest total plant taxa richness during the cool phase after glacier retreat when the area contained extensive and diverse alpine habitats (14-10 ka); followed by a decline when forests expanded during the warm early- to mid-Holocene (10-3.6 ka). Livestock grazing since 3.6 ka promoted plant taxa richness only weakly. Based on these inferred dependencies, our simulation yields a substantive decrease in plant taxa richness in response to warming-related alpine habitat loss over the next centuries. Accordingly, efforts of Tibetan biodiversity conservation should include conclusions from palaeoecological evidence.


Assuntos
Biodiversidade , DNA Antigo/análise , DNA de Plantas/análise , Aquecimento Global , Plantas/genética , Altitude , Código de Barras de DNA Taxonômico , Ecologia/métodos , Florestas , Paleontologia/métodos , Tibet
6.
Methods Mol Biol ; 1963: 31-44, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30875042

RESUMO

Environmental DNA preserved in sediments is rapidly gaining importance as a tool in paleoecology. Sampling procedures for sedimentary ancient DNA (sedaDNA) have to be well planned to ensure clean subsampling of the inside of sediment cores and avoid introducing contamination. Additionally, ancient DNA extraction protocols may need to be optimized for the recovery of DNA from sediments, which may contain inhibitors. Here we describe procedures for subsampling both nonfrozen and frozen sediment cores, and we describe an efficient method for ancient DNA extraction from such samples.


Assuntos
DNA Antigo/análise , DNA Antigo/isolamento & purificação , DNA de Plantas/análise , DNA de Plantas/isolamento & purificação , Sedimentos Geológicos/análise , Plantas/genética , Manejo de Espécimes/métodos , Ecossistema , Plantas/classificação
7.
PLoS One ; 14(7): e0216966, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31291259

RESUMO

Larix populations at the tundra-taiga ecotone in northern Siberia are highly under-represented in population genetic studies, possibly due to the remoteness of these regions that can only be accessed at extraordinary expense. The genetic signatures of populations in these boundary regions are therefore largely unknown. We aim to generate organelle reference genomes for the detection of single nucleotide polymorphisms (SNPs) that can be used for paleogenetic studies. We present 19 complete chloroplast genomes and mitochondrial genomic sequences of larches from the southern lowlands of the Taymyr Peninsula (northernmost range of Larix gmelinii (Rupr.) Kuzen.), the lower Omoloy River, and the lower Kolyma River (both in the range of Larix cajanderi Mayr). The genomic data reveal 84 chloroplast SNPs and 213 putatively mitochondrial SNPs. Parsimony-based chloroplast haplotype networks show no spatial structure of individuals from different geographic origins, while the mitochondrial haplotype network shows at least a slight spatial structure with haplotypes from the Omoloy and Kolyma populations being more closely related to each other than to most of the haplotypes from the Taymyr populations. Whole genome alignments with publicly available complete chloroplast genomes of different Larix species show that among official plant barcodes only the rcbL gene contains sufficient polymorphisms, but has to be sequenced completely to distinguish the different provenances. We provide 8 novel mitochondrial SNPs that are putatively diagnostic for the separation of L. gmelinii and L. cajanderi, while 4 chloroplast SNPs have the potential to distinguish the L. gmelinii/L. cajanderi group from other Larix species. Our organelle references can be used for a targeted primer and probe design allowing the generation of short amplicons. This is particularly important with regard to future investigations of, for example, the biogeographic history of Larix by screening ancient sedimentary DNA of Larix.


Assuntos
Larix/genética , Mapeamento Cromossômico , DNA Antigo , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , DNA de Plantas/genética , Variação Genética , Genética Populacional , Genoma de Cloroplastos , Genoma Mitocondrial , Genoma de Planta , Haplótipos , História Antiga , Larix/classificação , Polimorfismo de Nucleotídeo Único , Sibéria , Taiga , Tundra
8.
Genes (Basel) ; 8(10)2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29027988

RESUMO

Ecosystem boundaries, such as the Arctic-Boreal treeline, are strongly coupled with climate and were spatially highly dynamic during past glacial-interglacial cycles. Only a few studies cover vegetation changes since the last interglacial, as most of the former landscapes are inundated and difficult to access. Using pollen analysis and sedimentary ancient DNA (sedaDNA) metabarcoding, we reveal vegetation changes on Bol'shoy Lyakhovsky Island since the last interglacial from permafrost sediments. Last interglacial samples depict high levels of floral diversity with the presence of trees (Larix, Picea, Populus) and shrubs (Alnus, Betula, Ribes, Cornus, Saliceae) on the currently treeless island. After the Last Glacial Maximum, Larix re-colonised the island but disappeared along with most shrub taxa. This was probably caused by Holocene sea-level rise, which led to increased oceanic conditions on the island. Additionally, we applied two newly developed larch-specific chloroplast markers to evaluate their potential for tracking past population dynamics from environmental samples. The novel markers were successfully re-sequenced and exhibited two variants of each marker in last interglacial samples. SedaDNA can track vegetation changes as well as genetic changes across geographic space through time and can improve our understanding of past processes that shape modern patterns.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA