RESUMO
The response to DNA damage is critical for cellular homeostasis, tumor suppression, immunity, and gametogenesis. In order to provide an unbiased and global view of the DNA damage response in human cells, we undertook 31 CRISPR-Cas9 screens against 27 genotoxic agents in the retinal pigment epithelium-1 (RPE1) cell line. These screens identified 890 genes whose loss causes either sensitivity or resistance to DNA-damaging agents. Mining this dataset, we discovered that ERCC6L2 (which is mutated in a bone-marrow failure syndrome) codes for a canonical non-homologous end-joining pathway factor, that the RNA polymerase II component ELOF1 modulates the response to transcription-blocking agents, and that the cytotoxicity of the G-quadruplex ligand pyridostatin involves trapping topoisomerase II on DNA. This map of the DNA damage response provides a rich resource to study this fundamental cellular system and has implications for the development and use of genotoxic agents in cancer therapy.
Assuntos
Dano ao DNA , Redes Reguladoras de Genes/fisiologia , Aminoquinolinas/farmacologia , Animais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Citocromo-B(5) Redutase/genética , Citocromo-B(5) Redutase/metabolismo , Dano ao DNA/efeitos dos fármacos , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Humanos , Camundongos , Ácidos Picolínicos/farmacologia , RNA Guia de Cinetoplastídeos/metabolismo , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genéticaRESUMO
The ability to perturb genes in human cells is crucial for elucidating gene function and holds great potential for finding therapeutic targets for diseases such as cancer. To extend the catalog of human core and context-dependent fitness genes, we have developed a high-complexity second-generation genome-scale CRISPR-Cas9 gRNA library and applied it to fitness screens in five human cell lines. Using an improved Bayesian analytical approach, we consistently discover 5-fold more fitness genes than were previously observed. We present a list of 1,580 human core fitness genes and describe their general properties. Moreover, we demonstrate that context-dependent fitness genes accurately recapitulate pathway-specific genetic vulnerabilities induced by known oncogenes and reveal cell-type-specific dependencies for specific receptor tyrosine kinases, even in oncogenic KRAS backgrounds. Thus, rigorous identification of human cell line fitness genes using a high-complexity CRISPR-Cas9 library affords a high-resolution view of the genetic vulnerabilities of a cell.
Assuntos
Genes Essenciais , Teorema de Bayes , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Biblioteca Gênica , Humanos , MutaçãoRESUMO
DNA repair by homologous recombination (HR) is essential for genomic integrity, tumor suppression, and the formation of gametes. HR uses DNA synthesis to repair lesions such as DNA double-strand breaks and stalled DNA replication forks, but despite having a good understanding of the steps leading to homology search and strand invasion, we know much less of the mechanisms that establish recombination-associated DNA polymerization. Here, we report that C17orf53/HROB is an OB-fold-containing factor involved in HR that acts by recruiting the MCM8-MCM9 helicase to sites of DNA damage to promote DNA synthesis. Mice with targeted mutations in Hrob are infertile due to depletion of germ cells and display phenotypes consistent with a prophase I meiotic arrest. The HROB-MCM8-MCM9 pathway acts redundantly with the HELQ helicase, and cells lacking both HROB and HELQ have severely impaired HR, suggesting that they underpin two major routes for the completion of HR downstream from RAD51. The function of HROB in HR is reminiscent of that of gp59, which acts as the replicative helicase loader during bacteriophage T4 recombination-dependent DNA replication. We therefore propose that the loading of MCM8-MCM9 by HROB may similarly be a key step in the establishment of mammalian recombination-associated DNA synthesis.
Assuntos
Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Animais , Linhagem Celular , DNA Helicases/metabolismo , Feminino , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Infertilidade/genética , Masculino , Camundongos Endogâmicos C57BL , Deleção de Sequência , Células Sf9RESUMO
Sequence-dependent recognition of dsDNA-binding proteins is well understood, yet sequence-specific recognition of dsRNA by proteins remains largely unknown, despite their importance in RNA maturation pathways. Adenosine deaminases that act on RNA (ADARs) recode genomic information by the site-selective deamination of adenosine. Here, we report the solution structure of the ADAR2 double-stranded RNA-binding motifs (dsRBMs) bound to a stem-loop pre-mRNA encoding the R/G editing site of GluR-2. The structure provides a molecular basis for how dsRBMs recognize the shape, and also more surprisingly, the sequence of the dsRNA. The unexpected direct readout of the RNA primary sequence by dsRBMs is achieved via the minor groove of the dsRNA and this recognition is critical for both editing and binding affinity at the R/G site of GluR-2. More generally, our findings suggest a solution to the sequence-specific paradox faced by many dsRBM-containing proteins that are involved in post-transcriptional regulation of gene expression.
Assuntos
Adenosina Desaminase/química , RNA de Cadeia Dupla/química , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Precursores de RNA/metabolismo , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA , Ratos , Receptores de AMPA/genética , Alinhamento de SequênciaRESUMO
In DNA repair, the resection of double-strand breaks dictates the choice between homology-directed repair-which requires a 3' overhang-and classical non-homologous end joining, which can join unresected ends1,2. BRCA1-mutant cancers show minimal resection of double-strand breaks, which renders them deficient in homology-directed repair and sensitive to inhibitors of poly(ADP-ribose) polymerase 1 (PARP1)3-8. When BRCA1 is absent, the resection of double-strand breaks is thought to be prevented by 53BP1, RIF1 and the REV7-SHLD1-SHLD2-SHLD3 (shieldin) complex, and loss of these factors diminishes sensitivity to PARP1 inhibitors4,6-9. Here we address the mechanism by which 53BP1-RIF1-shieldin regulates the generation of recombinogenic 3' overhangs. We report that CTC1-STN1-TEN1 (CST)10, a complex similar to replication protein A that functions as an accessory factor of polymerase-α (Polα)-primase11, is a downstream effector in the 53BP1 pathway. CST interacts with shieldin and localizes with Polα to sites of DNA damage in a 53BP1- and shieldin-dependent manner. As with loss of 53BP1, RIF1 or shieldin, the depletion of CST leads to increased resection. In BRCA1-deficient cells, CST blocks RAD51 loading and promotes the efficacy of PARP1 inhibitors. In addition, Polα inhibition diminishes the effect of PARP1 inhibitors. These data suggest that CST-Polα-mediated fill-in helps to control the repair of double-strand breaks by 53BP1, RIF1 and shieldin.
Assuntos
Quebras de DNA de Cadeia Dupla , DNA Polimerase I/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Animais , Proteína BRCA1/deficiência , Linhagem Celular , DNA Primase/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Humanos , Camundongos , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Reparo de DNA por Recombinação , Telômero/genética , Telômero/metabolismoRESUMO
The observation that BRCA1- and BRCA2-deficient cells are sensitive to inhibitors of poly(ADP-ribose) polymerase (PARP) has spurred the development of cancer therapies that use these inhibitors to target deficiencies in homologous recombination1. The cytotoxicity of PARP inhibitors depends on PARP trapping, the formation of non-covalent protein-DNA adducts composed of inhibited PARP1 bound to DNA lesions of unclear origins1-4. To address the nature of such lesions and the cellular consequences of PARP trapping, we undertook three CRISPR (clustered regularly interspersed palindromic repeats) screens to identify genes and pathways that mediate cellular resistance to olaparib, a clinically approved PARP inhibitor1. Here we present a high-confidence set of 73 genes, which when mutated cause increased sensitivity to PARP inhibitors. In addition to an expected enrichment for genes related to homologous recombination, we discovered that mutations in all three genes encoding ribonuclease H2 sensitized cells to PARP inhibition. We establish that the underlying cause of the PARP-inhibitor hypersensitivity of cells deficient in ribonuclease H2 is impaired ribonucleotide excision repair5. Embedded ribonucleotides, which are abundant in the genome of cells deficient in ribonucleotide excision repair, are substrates for cleavage by topoisomerase 1, resulting in PARP-trapping lesions that impede DNA replication and endanger genome integrity. We conclude that genomic ribonucleotides are a hitherto unappreciated source of PARP-trapping DNA lesions, and that the frequent deletion of RNASEH2B in metastatic prostate cancer and chronic lymphocytic leukaemia could provide an opportunity to exploit these findings therapeutically.
Assuntos
Sistemas CRISPR-Cas , Dano ao DNA , Edição de Genes , Neoplasias/genética , Neoplasias/patologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Ribonucleotídeos/genética , Animais , Proteína BRCA1/deficiência , Proteína BRCA1/genética , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/genética , Replicação do DNA , DNA Topoisomerases Tipo I/metabolismo , Feminino , Genes BRCA1 , Genoma/genética , Células HeLa , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/deficiência , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Ribonuclease H/deficiência , Ribonuclease H/genética , Ribonuclease H/metabolismo , Mutações Sintéticas Letais , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
53BP1 is a chromatin-binding protein that regulates the repair of DNA double-strand breaks by suppressing the nucleolytic resection of DNA termini1,2. This function of 53BP1 requires interactions with PTIP3 and RIF14-9, the latter of which recruits REV7 (also known as MAD2L2) to break sites10,11. How 53BP1-pathway proteins shield DNA ends is currently unknown, but there are two models that provide the best potential explanation of their action. In one model the 53BP1 complex strengthens the nucleosomal barrier to end-resection nucleases12,13, and in the other 53BP1 recruits effector proteins with end-protection activity. Here we identify a 53BP1 effector complex, shieldin, that includes C20orf196 (also known as SHLD1), FAM35A (SHLD2), CTC-534A2.2 (SHLD3) and REV7. Shieldin localizes to double-strand-break sites in a 53BP1- and RIF1-dependent manner, and its SHLD2 subunit binds to single-stranded DNA via OB-fold domains that are analogous to those of RPA1 and POT1. Loss of shieldin impairs non-homologous end-joining, leads to defective immunoglobulin class switching and causes hyper-resection. Mutations in genes that encode shieldin subunits also cause resistance to poly(ADP-ribose) polymerase inhibition in BRCA1-deficient cells and tumours, owing to restoration of homologous recombination. Finally, we show that binding of single-stranded DNA by SHLD2 is critical for shieldin function, consistent with a model in which shieldin protects DNA ends to mediate 53BP1-dependent DNA repair.
Assuntos
Reparo do DNA , Complexos Multiproteicos/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples/genética , Feminino , Genes BRCA1 , Humanos , Switching de Imunoglobulina/genética , Camundongos , Modelos Biológicos , Complexos Multiproteicos/química , Complexos Multiproteicos/deficiência , Complexos Multiproteicos/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas de Ligação a Telômeros/metabolismo , Proteína Supressora de Tumor p53/deficiênciaRESUMO
The regulation of 5' end resection at DSBs and telomeres prevents genome instability. DSB resection is positively and negatively regulated by ATM signaling through CtIP/MRN and 53BP1-bound Rif1, respectively. Similarly, telomeres lacking TRF2 undergo ATM-controlled CtIP-dependent hyper-resection when the repression by 53BP1/Rif1 is alleviated. However, telomere resection in the absence of 53BP1/Rif1 is more extensive upon complete removal of shelterin, indicating additional protection against resection by shelterin. Here we show that TPP1 and POT1a/b in shelterin block a resection pathway distinct from that repressed by TRF2. This second pathway is regulated by ATR signaling, involves Exo1 and BLM, and is inhibited by 53BP1/Rif1. Thus, mammalian cells have two distinct 5' end-resection pathways that are regulated by DNA damage signaling, in part through Rif1-mediated inhibition. The data show that telomeres are protected from hyper-resection through the repression of the ATM and ATR kinases by TRF2 and TPP1-bound POT1a/b, respectively.
Assuntos
Aminopeptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Serina Proteases/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Camundongos , Modelos Biológicos , Estrutura Terciária de Proteína , RecQ Helicases/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53RESUMO
The semiconservative replication of telomeres is facilitated by the shelterin component TRF1. Without TRF1, replication forks stall in the telomeric repeats, leading to ATR kinase signaling upon S-phase progression, fragile metaphase telomeres that resemble the common fragile sites (CFSs), and the association of sister telomeres. In contrast, TRF1 does not contribute significantly to the end protection functions of shelterin. We addressed the mechanism of TRF1 action using mouse conditional knockouts of BLM, TRF1, TPP1, and Rap1 in combination with expression of TRF1 and TIN2 mutants. The data establish that TRF1 binds BLM to facilitate lagging but not leading strand telomeric DNA synthesis. As the template for lagging strand telomeric DNA synthesis is the TTAGGG repeat strand, TRF1-bound BLM is likely required to remove secondary structures formed by these sequences. In addition, the data establish that TRF1 deploys TIN2 and the TPP1/POT1 heterodimers in shelterin to prevent ATR during telomere replication and repress the accompanying sister telomere associations. Thus, TRF1 uses two distinct mechanisms to promote replication of telomeric DNA and circumvent the consequences of replication stress. These data are relevant to the expression of CFSs and provide insights into TIN2, which is compromised in dyskeratosis congenita (DC) and related disorders.
Assuntos
Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Repetições de Microssatélites/genética , RecQ Helicases/metabolismo , Serina Proteases/metabolismo , Telômero/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Células Cultivadas , Ativação Enzimática , Técnicas de Inativação de Genes , Mutação , Ligação Proteica , RecQ Helicases/genética , Serina Proteases/genética , Complexo Shelterina , Transdução de Sinais , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/genéticaRESUMO
More than two decades of genetic research have identified and assigned main biological functions of shelterin proteins that safeguard telomeres. However, a molecular mechanism of how each protein subunit contributes to the protecting function of the whole shelterin complex remains elusive. Human Repressor activator protein 1 (Rap1) forms a multifunctional complex with Telomeric Repeat binding Factor 2 (TRF2). Rap1-TRF2 complex is a critical part of shelterin as it suppresses homology-directed repair in Ku 70/80 heterodimer absence. To understand how Rap1 affects key functions of TRF2, we investigated full-length Rap1 binding to TRF2 and Rap1-TRF2 complex interactions with double-stranded DNA by quantitative biochemical approaches. We observed that Rap1 reduces the overall DNA duplex binding affinity of TRF2 but increases the selectivity of TRF2 to telomeric DNA. Additionally, we observed that Rap1 induces a partial release of TRF2 from DNA duplex. The improved TRF2 selectivity to telomeric DNA is caused by less pronounced electrostatic attractions between TRF2 and DNA in Rap1 presence. Thus, Rap1 prompts more accurate and selective TRF2 recognition of telomeric DNA and TRF2 localization on single/double-strand DNA junctions. These quantitative functional studies contribute to the understanding of the selective recognition of telomeric DNA by the whole shelterin complex.
Assuntos
DNA/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Ligação Competitiva/efeitos dos fármacos , DNA/química , DNA/genética , Polarização de Fluorescência , Humanos , Cinética , Ligação Proteica/efeitos dos fármacos , Complexo Shelterina , Cloreto de Sódio/farmacologia , Espectrometria de Fluorescência , Eletricidade Estática , Ressonância de Plasmônio de Superfície , Telômero/genética , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/genética , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/genéticaRESUMO
Pharmacological inhibition of the ataxia telangiectasia and Rad3-related protein serine/threonine kinase (ATR; also known as FRAP-related protein (FRP1)) has emerged as a promising strategy for cancer treatment that exploits synthetic lethal interactions with proteins involved in DNA damage repair, overcomes resistance to other therapies and enhances antitumour immunity. Multiple novel, potent ATR inhibitors are being tested in clinical trials using biomarker-directed approaches and involving patients across a broad range of solid cancer types; some of these inhibitors have now entered phase III trials. Further insight into the complex interactions of ATR with other DNA replication stress response pathway components and with the immune system is necessary in order to optimally harness the potential of ATR inhibitors in the clinic and achieve hypomorphic targeting of the various ATR functions. Furthermore, a deeper understanding of the diverse range of predictive biomarkers of response to ATR inhibitors and of the intraclass differences between these agents could help to refine trial design and patient selection strategies. Key challenges that remain in the clinical development of ATR inhibitors include the optimization of their therapeutic index and the development of rational combinations with these agents. In this Review, we detail the molecular mechanisms regulated by ATR and their clinical relevance, and discuss the challenges that must be addressed to extend the benefit of ATR inhibitors to a broad population of patients with cancer.
Assuntos
Neoplasias , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Reparo do DNA , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Dano ao DNARESUMO
ATR is a key kinase in the DNA-damage response (DDR) that is synthetic lethal with several other DDR proteins, making it an attractive target for the treatment of genetically selected solid tumors. Herein we describe the discovery of a novel ATR inhibitor guided by a pharmacophore model to position a key hydrogen bond. Optimization was driven by potency and selectivity over the related kinase mTOR, resulting in the identification of camonsertib (RP-3500) with high potency and excellent ADME properties. Preclinical evaluation focused on the impact of camonsertib on myelosuppression, and an exploration of intermittent dosing schedules to allow recovery of the erythroid compartment and mitigate anemia. Camonsertib is currently undergoing clinical evaluation both as a single agent and in combination with talazoparib, olaparib, niraparib, lunresertib, or gemcitabine (NCT04497116, NCT04972110, NCT04855656). A preliminary recommended phase 2 dose for monotherapy was identified as 160 mg QD given 3 days/week.
Assuntos
Neoplasias , Humanos , Proteínas Mutadas de Ataxia Telangiectasia , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , GencitabinaRESUMO
Non-coding RNA polymerase II transcripts are processed by the poly(A)-independent termination pathway that requires the Nrd1 complex. The Nrd1 complex includes two RNA-binding proteins, the nuclear polyadenylated RNA-binding (Nab) 3 and the nuclear pre-mRNA down-regulation (Nrd) 1 that bind their specific termination elements. Here we report the solution structure of the RNA-recognition motif (RRM) of Nab3 in complex with a UCUU oligonucleotide, representing the Nab3 termination element. The structure shows that the first three nucleotides of UCUU are accommodated on the ß-sheet surface of Nab3 RRM, but reveals a sequence-specific recognition only for the central cytidine and uridine. The specific contacts we identified are important for binding affinity in vitro as well as for yeast viability. Furthermore, we show that both RNA-binding motifs of Nab3 and Nrd1 alone bind their termination elements with a weak affinity. Interestingly, when Nab3 and Nrd1 form a heterodimer, the affinity to RNA is significantly increased due to the cooperative binding. These findings are in accordance with the model of their function in the poly(A) independent termination, in which binding to the combined and/or repetitive termination elements elicits efficient termination.
Assuntos
Proteínas Nucleares/química , Oligonucleotídeos/química , Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Transcrição Gênica , Sequência de Bases , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oligonucleotídeos/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , SoluçõesRESUMO
Combinations of ataxia telangiectasia- and Rad3-related kinase inhibitors (ATRis) and poly(ADP-ribose) polymerase inhibitors (PARPis) synergistically kill tumor cells through modulation of complementary DNA repair pathways, but their tolerability is limited by hematological toxicities. To address this, we performed a genome-wide CRISPR-Cas9 screen to identify genetic alterations that hypersensitize cells to a combination of the ATRi RP-3500 with PARPi, including deficiency in RNase H2, RAD51 paralog mutations, or the "alternative lengthening of telomeres" telomere maintenance mechanism. We show that RP-3500 and PARPi combinations kill cells carrying these genetic alterations at doses sub-therapeutic as single agents. We also demonstrate the mechanism of combination hypersensitivity in RNase H2-deficient cells, where we observe an irreversible replication catastrophe, allowing us to design a highly efficacious and tolerable in vivo dosing schedule. We present a comprehensive dataset to inform development of ATRi and PARPi combinations and an experimental framework applicable to other drug combination strategies.
Assuntos
Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , RibonucleasesRESUMO
BACKGROUND: Gastroesophageal junction (GEJ) adenocarcinoma is a rare cancer associated with poor prognosis. The genetic factors conferring predisposition to GEJ adenocarcinoma have yet to be identified. METHODS: We analyzed germline testing results from 23 381 cancer patients undergoing tumor-normal sequencing, of which 312 individuals had GEJ adenocarcinoma. Genomic profiles and clinico-pathologic features were analyzed for the GEJ adenocarcinomas. Silencing of ATM and ATR was performed using validated short-interfering RNA species in GEJ, esophageal, and gastric adenocarcinoma cell lines. All statistical tests were 2-sided. RESULTS: Pathogenic or likely pathogenic ATM variants were identified in 18 of 312 patients (5.8%), and bi-allelic inactivation of ATM through loss of heterozygosity of the wild-type allele was detected in all (16 of 16) samples with sufficient tumor content. Germline ATM-mutated GEJ adenocarcinomas largely lacked somatic mutations in TP53, were more likely to harbor MDM2 amplification, and harbored statistically significantly fewer somatic single nucleotide variants (2.0 mutations/Mb vs 7.9 mutations/Mb; P < .001). A statistically significantly higher proportion of germline ATM-mutated than ATM-wild-type GEJ adenocarcinoma patients underwent a curative resection (10 [100%] vs 92 [86.8%], P = .04; Fisher's exact test.), A synthetic lethal interaction between short-interfering RNA silencing of ATM and ATR was observed in the models analyzed. CONCLUSIONS: Our results indicate that germline pathogenic variants in ATM drive oncogenesis in GEJ adenocarcinoma and might result in a distinct clinical phenotype. Given the high prevalence of germline ATM-mutated GEJ adenocarcinomas, genetic testing for individuals with GEJ adenocarcinomas may be considered to better inform prognostication, treatment decisions, and future cancer risk.
Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Neoplasias Gástricas , Adenocarcinoma/genética , Adenocarcinoma/patologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Junção Esofagogástrica/metabolismo , Junção Esofagogástrica/patologia , Células Germinativas/metabolismo , Células Germinativas/patologia , Humanos , Neoplasias Gástricas/metabolismoRESUMO
Ataxia telangiectasia and Rad3-related (ATR) kinase protects genome integrity during DNA replication. RP-3500 is a novel, orally bioavailable clinical-stage ATR kinase inhibitor (NCT04497116). RP-3500 is highly potent with IC50 values of 1.0 and 0.33 nmol/L in biochemical and cell-based assays, respectively. RP-3500 is highly selective for ATR with 30-fold selectivity over mammalian target of rapamycin (mTOR) and more than 2,000-fold selectivity over ataxia telangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK), and phosphatidylinositol 3-kinase alpha (PI3Kα) kinases. In vivo, RP-3500 treatment results in potent single-agent efficacy and/or tumor regression in multiple xenograft models at minimum effective doses (MED) of 5 to 7 mg/kg once daily. Pharmacodynamic assessments validate target engagement, with dose-proportional tumor inhibition of phosphorylated checkpoint kinase 1 (pCHK1) (IC80 = 18.6 nmol/L) and induction of phosphorylated H2A.X variant histone (γH2AX), phosphorylated DNA-PK catalytic subunit (pDNA-PKcs), and phosphorylated KRAB-associated protein 1 (pKAP1). RP-3500 exposure at MED indicates that circulating free plasma levels above the in vivo tumor IC80 for 10 to 12 hours are sufficient for efficacy on a continuous schedule. However, short-duration intermittent (weekly 3 days on/4 days off) dosing schedules as monotherapy or given concomitantly with reduced doses of olaparib or niraparib, maximize tumor growth inhibition while minimizing the impact on red blood cell depletion, emphasizing the reversible nature of erythroid toxicity with RP-3500 and demonstrating superior efficacy compared with sequential treatment. These results provide a strong preclinical rationale to support ongoing clinical investigation of the novel ATR inhibitor, RP-3500, on an intermittent schedule as a monotherapy and in combination with PARP inhibitors as a potential means of maximizing clinical benefit.
Assuntos
Ataxia Telangiectasia , Inibidores de Poli(ADP-Ribose) Polimerases , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteína Quinase Ativada por DNA/metabolismo , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Synthetic lethality (SL) provides a conceptual framework for tackling targets that are not classically "druggable," including loss-of-function mutations in tumor suppressor genes required for carcinogenesis. Recent technological advances have led to an inflection point in our understanding of genetic interaction networks and ability to identify a wide array of novel SL drug targets. Here, we review concepts and lessons emerging from first-generation trials aimed at testing SL drugs, discuss how the nature of the targeted lesion can influence therapeutic outcomes, and highlight the need to develop clinical biomarkers distinct from those based on the paradigms developed to target activated oncogenes. SIGNIFICANCE: SL offers an approach for the targeting of loss of function of tumor suppressor and DNA repair genes, as well as of amplification and/or overexpression of genes that cannot be targeted directly. A next generation of tumor-specific alterations targetable through SL has emerged from high-throughput CRISPR technology, heralding not only new opportunities for drug development, but also important challenges in the development of optimal predictive biomarkers.
Assuntos
Neoplasias/tratamento farmacológico , Mutações Sintéticas Letais , Desenvolvimento de Medicamentos/tendências , Genes Supressores de Tumor , Humanos , Terapia de Alvo Molecular , Neoplasias/genéticaRESUMO
Proteins that bind telomeric DNA modulate the structure of chromosome ends and control telomere function and maintenance. It has been shown that AtTRB (Arabidopsis thaliana telomere-repeat-binding factor) proteins from the SMH (single-Myb-histone) family selectively bind double-stranded telomeric DNA and interact with the telomeric protein AtPOT1b (A. thaliana protection of telomeres 1b), which is involved in telomere capping. In the present study, we performed the first quantitative DNA-binding study of this plant-specific family of proteins. Interactions of full-length proteins AtTRB1 and AtTRB3 with telomeric DNA were analysed by electrophoretic mobility-shift assay, fluorescence anisotropy and surface plasmon resonance to reveal their binding stoichiometry and kinetics. Kinetic analyses at different salt conditions enabled us to estimate the electrostatic component of binding and explain different affinities of the two proteins to telomeric DNA. On the basis of available data, a putative model explaining the binding stoichiometry and the protein arrangement on telomeric DNA is presented.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histonas/metabolismo , Telômero/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ensaio de Desvio de Mobilidade Eletroforética , Polarização de Fluorescência , Histonas/genética , Cinética , Modelos Biológicos , Ligação Proteica/genética , Ressonância de Plasmônio de Superfície , Telômero/genéticaRESUMO
During apoptosis several mitochondrial proteins are released. Some of them participate in caspase-independent nuclear DNA degradation, especially apoptosis-inducing factor (AIF) and endonuclease G (endoG). Another interesting protein, which was expected to act similarly as AIF due to the high sequence homology with AIF is AIF-homologous mitochondrion-associated inducer of death (AMID). We studied the structure, cellular localization, and interactions of several proteins in silico and also in cells using fluorescent microscopy. We found the AMID protein to be cytoplasmic, most probably incorporated into the cytoplasmic side of the lipid membranes. Bioinformatic predictions were conducted to analyze the interactions of the studied proteins with each other and with other possible partners. We conducted molecular modeling of proteins with unknown 3D structures. These models were then refined by MolProbity server and employed in molecular docking simulations of interactions. Our results show data acquired using a combination of modern in silico methods and image analysis to understand the localization, interactions and functions of proteins AMID, AIF, endonuclease G, and other apoptosis-related proteins.