Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dent Res ; 96(11): 1314-1321, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28767323

RESUMO

Nonsyndromic cleft palate only (nsCPO) is a facial malformation that has a livebirth prevalence of 1 in 2,500. Research suggests that the etiology of nsCPO is multifactorial, with a clear genetic component. To date, genome-wide association studies have identified only 1 conclusive common variant for nsCPO, that is, a missense variant in the gene grainyhead-like-3 ( GRHL3). Thus, the underlying genetic causes of nsCPO remain largely unknown. The present study aimed at identifying rare variants that might contribute to nsCPO risk, via whole-exome sequencing (WES), in multiply affected Central European nsCPO pedigrees. WES was performed in 2 affected first-degree relatives from each family. Variants shared between both individuals were analyzed for their potential deleterious nature and a low frequency in the general population. Genes carrying promising variants were annotated for 1) reported associations with facial development, 2) multiple occurrence of variants, and 3) expression in mouse embryonic palatal shelves. This strategy resulted in the identification of a set of 26 candidate genes that were resequenced in 132 independent nsCPO cases and 623 independent controls of 2 different ethnicities, using molecular inversion probes. No rare loss-of-function mutation was identified in either WES or resequencing step. However, we identified 2 or more missense variants predicted to be deleterious in each of 3 genes ( ACACB, PTPRS, MIB1) in individuals from independent families. In addition, the analyses identified a novel variant in GRHL3 in 1 patient and a variant in CREBBP in 2 siblings. Both genes underlie different syndromic forms of CPO. A plausible hypothesis is that the apparently nonsyndromic clefts in these 3 patients might represent hypomorphic forms of the respective syndromes. In summary, the present study identified rare variants that might contribute to nsCPO risk and suggests candidate genes for further investigation.


Assuntos
Fissura Palatina/genética , Exoma/genética , Europa (Continente) , Feminino , Predisposição Genética para Doença , Variação Genética , Humanos , Masculino , Análise de Sequência de DNA , Iêmen
2.
Mol Syndromol ; 5(2): 65-75, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24715853

RESUMO

Fragile X syndrome (FXS) is one of the most common causes of intellectual disability/developmental delay (ID/DD), especially in males. It is caused most often by CGG trinucleotide repeat expansions, and less frequently by point mutations and partial or full deletions of the FMR1 gene. The wide clinical spectrum of affected females partly depends on their X-inactivation status. Only few female ID/DD patients with microdeletions including FMR1 have been reported. We describe 3 female patients with 3.5-, 4.2- and 9.2-Mb de novo microdeletions in Xq27.3-q28 containing FMR1. X-inactivation was random in all patients, yet they presented with ID/DD as well as speech delay, macrocephaly and other features attributable to FXS. No signs of autism were present. Here, we further delineate the clinical spectrum of female patients with microdeletions. FMR1 expression studies gave no evidence for an absolute threshold below which signs of FXS present. Since FMR1 expression is known to be highly variable between unrelated females, and since FMR1 mRNA levels have been suggested to be more similar among family members, we further explored the possibility of an intrafamilial effect. Interestingly, FMR1 mRNA levels in all 3 patients were significantly lower than in their respective mothers, which was shown to be specific for patients with microdeletions containing FMR1.

3.
Mol Syndromol ; 3(2): 68-75, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23326251

RESUMO

Microdeletions including 5q31 have been reported in only few patients to date. Apart from intellectual disability/developmental delay (ID/DD) of varying degrees, which is common to all reported patients, the clinical spectrum is wide and includes short stature, failure to thrive, congenital heart defects, encephalopathies, and dysmorphic features. We report a patient with a 0.9-Mb de novo deletion in 5q31.2, the smallest microdeletion in 5q31 reported thus far. His clinical presentation includes mild DD, borderline short stature, postnatal microcephaly, and mild dysmorphic signs including microretrognathia. Together with data from 7 reported overlapping microdeletions, analysis of our patient enabled the tentative delineation of a phenotype map for 5q31 deletions. In contrast to the mild phenotype of small microdeletions affecting only 5q31.2, carriers of larger microdeletions which also include subbands 5q31.1 and/or 5q31.3 seem to be more severely affected with congenital malformations, growth anomalies, and severe encephalopathies. A 240-kb smallest region of overlap in 5q31.2 is delineated which contains only 2 genes, CTNNA1 and LRRTM2. We propose LRRTM2 as the most promising candidate gene for ID/DD due to its expression pattern, function as a key regulator of excitatory development, and interaction with Neurexin 1. However, sequence analysis of LRRTM2 in 330 patients with ID/DD revealed no relevant alterations, excluding point mutations in LRRTM2 as a frequent cause of ID/DD in patients without microdeletions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA