RESUMO
Central nervous system (CNS) disorders and trauma involving changes to the neuronal myelin sheath have long been a topic of great interest. One common pathological change in these diseases is the generation of myelin debris resulting from the breakdown of the myelin sheath. Myelin debris contains many inflammatory and neurotoxic factors that inhibit remyelination and make its clearance a prerequisite for healing in CNS disorders. Many professional and semiprofessional phagocytes participate in the clearance of myelin debris in the CNS. These cells use various mechanisms for the uptake of myelin debris, and each cell type produces its own unique set of pathologic consequences resulting from the debris uptake. Examining these cells' phagocytosis of myelin debris will contribute to a more complete understanding of CNS disease pathogenesis and help us conceptualize how the necessary clearance of myelin debris must be balanced with the detrimental consequences brought about by its clearance.
Assuntos
Bainha de Mielina , Fagocitose , Sistema Nervoso Central , Microglia/metabolismo , Bainha de Mielina/metabolismo , Fagócitos/metabolismo , Fagocitose/fisiologiaRESUMO
Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease characterized by progressive motor neuron degeneration in the brain and spinal cord leading to muscle atrophy, paralysis, and death. Mitochondrial dysfunction is a major contributor to motor neuron degeneration associated with ALS progression. Mitochondrial abnormalities have been determined in spinal cords of animal disease models and ALS patients. However, molecular mechanisms leading to mitochondrial dysfunction in sporadic ALS (sALS) patients remain unclear. Also, segmental or regional variation in mitochondrial activity in the spinal cord has not been extensively examined in ALS. In our study, the activity of mitochondrial electron transport chain complex IV was examined in post-mortem gray and white matter of the cervical and lumbar spinal cords from male and female sALS patients and controls. Mitochondrial distribution and density in spinal cord motor neurons, lateral funiculus, and capillaries in gray and white matter were analyzed by immunohistochemistry. Results showed that complex IV activity was significantly decreased only in gray matter in both cervical and lumbar spinal cords from ALS patients. In ALS cervical and lumbar spinal cords, significantly increased mitochondrial density and altered distribution were observed in motor neurons, lateral funiculus, and cervical white matter capillaries. Discrete decreased complex IV activity in addition to changes in mitochondria distribution and density determined in the spinal cord in sALS patients are novel findings. These explicit mitochondrial defects in the spinal cord may contribute to ALS pathogenesis and should be considered in development of therapeutic approaches for this disease.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Adulto , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Substância Cinzenta/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Substância Branca/patologiaRESUMO
Calorie restriction (CR) has been shown to increase lifespan and delay aging phenotypes in many diverse eukaryotic species. In mouse models of Alzheimer's disease (AD), CR has been shown to decrease amyloid-beta and hyperphosphorylated tau levels and preserve cognitive function. Overexpression of human mutant tau protein has been shown to induce deficits in mitochondrial electron transport chain complex I activity. Therefore, experiments were performed to determine the effects of 4-month CR on brain mitochondrial function in Tg4510 mice, which express human P301L tau. Expression of mutant tau led to decreased ADP-stimulated respiratory rates, but not uncoupler-stimulated respiratory rates. The membrane potential was also slightly higher in mitochondria from the P301L tau mice. As shown previously, tau expression decreased mitochondrial complex I activity. The decreased complex I activity, decreased ADP-stimulated respiratory rate, and increased mitochondrial membrane potential occurring in mitochondria from Tg4510 mice were not restored by CR. However, the CR diet did result in a genotype independent decrease in mitochondrial F0F1-ATPase activity. This decrease in F0F1-ATPase activity was not due to lowered levels of the alpha or beta subunits of F0F1-ATPase. The possible mechanisms through which CR reduces the F0F1-ATPase activity in brain mitochondria are discussed.
Assuntos
Doença de Alzheimer/metabolismo , Restrição Calórica , Mitocôndrias/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Proteínas tau/genética , Doença de Alzheimer/genética , Animais , Encéfalo/metabolismo , Respiração Celular , Potencial da Membrana Mitocondrial , Camundongos , Proteínas tau/metabolismoRESUMO
Central nervous system (CNS) trauma activates a persistent repair response that leads to fibrotic scar formation within the lesion. This scarring is similar to other organ fibrosis in many ways; however, the unique features of the CNS differentiate it from other organs. In this review, we discuss fibrotic scar formation in CNS trauma, including the cellular origins of fibroblasts, the mechanism of fibrotic scar formation following an injury, as well as the implication of the fibrotic scar in CNS tissue remodeling and regeneration. While discussing the shared features of CNS fibrotic scar and fibrosis outside the CNS, we highlight their differences and discuss therapeutic targets that may enhance regeneration in the CNS.
Assuntos
Traumatismos da Medula Espinal , Traumatismos do Sistema Nervoso , Sistema Nervoso Central/patologia , Cicatriz/patologia , Fibroblastos/patologia , Fibrose , Humanos , Traumatismos da Medula Espinal/patologiaRESUMO
Phagocytosis performed by a macrophage involves complex membrane trafficking and reorganization among various membranous cellular structures including phagosomes and vesicles derived from the phagosomes known as phagosome-derived vesicles. The present work reports on development of a technique that allows to specifically label the phagosome-derived vesicles in macrophages with a membrane dye. The technique is based on the use of microfabricated microparticles that are made of a thermosensitive nonbiodegradable polymer poly(N-isopropylacrylamide) (PNIPAM) or its derivative and contain a membrane dye 1,1'-dialkyl-3,3,3',3'-tetramethylindodicarbocyanine (DiI). The microparticles can be phagocytosed by RAW264.7 macrophages into their phagosomes, resulting in formation of intracellular DiI-positive vesicles derived from the phagosomes. The DiI-positive vesicles are motile and acidic; can be stained by fluorescently labelled dextran added in the culture medium; and can accumulate around new phagosomes, indicating that they possess properties of lysosomes. This technique is also applicable to another membrane dye 3,3'-dioctadecyloxacarbocyanine (DiO) and holds great potential to be useful for advancing our understanding of phagocytosis. STATEMENT OF SIGNIFICANCE: Phagocytosis performed by macrophages is a cellular process of great importance to various applications of biomaterials such as drug delivery and medical implantation. This work reports on a technique for characterizing phagocytosis based on the use of poly(N-isopropylacrylamide), which is a major biomaterial with numerous applications. This technique is the first of its kind and has generated an original finding about phagocytosis. In addition to drug delivery and medical implantation, phagocytosis plays critical roles in diseases, injuries and vaccination. This work could thus attract immediate and widespread interests in the field of biomaterials science and engineering.
Assuntos
Fagocitose , Fagossomos , Materiais Biocompatíveis , Lisossomos , MacrófagosRESUMO
Neutrophils are short-lived cells of the innate immune system and the first line of defense at the site of an infection and tissue injury. Pattern recognition receptors on neutrophils recognize pathogen-associated molecular patterns or danger-associated molecular patterns, which recruit them to the destined site. Neutrophils are professional phagocytes with efficient granular constituents that aid in the neutralization of pathogens. In addition to phagocytosis and degranulation, neutrophils are proficient in creating neutrophil extracellular traps (NETs) that immobilize pathogens to prevent their spread. Because of the cytotoxicity of the associated granular proteins within NETs, the microbes can be directly killed once immobilized by the NETs. The role of neutrophils in infection is well studied; however, there is less emphasis placed on the role of neutrophils in tissue injury, such as traumatic spinal cord injury. Upon the initial mechanical injury, the innate immune system is activated in response to the molecules produced by the resident cells of the injured spinal cord initiating the inflammatory cascade. This review provides an overview of the essential role of neutrophils and explores the contribution of neutrophils to the pathologic changes in the injured spinal cord.
RESUMO
Although the increased expression of members of the chondroitin sulfate proteoglycan family, such as neuron-glial antigen 2 (NG2), have been well documented after an injury to the spinal cord, a complete picture as to the cellular origins and function of this NG2 expression has yet to be made. Using a spinal cord injury (SCI) mouse model, we describe that some infiltrated bone marrow-derived macrophages (BMDMΦ) are early contributors to NG2/CSPG4 expression and secretion after SCI. We demonstrate for the first time that a lesion-related form of cellular debris generated from damaged myelin sheaths can increase NG2/CSPG4 expression in BMDMΦ, which then exhibit enhanced proliferation and decreased phagocytic capacity. These results suggest that BMDMΦ may play a much more nuanced role in secondary spinal cord injury than previously thought, including acting as early contributors to the NG2 component of the glial scar.
RESUMO
Mitochondrial DNA mutations accumulate with age and may play a role in stem cell aging as suggested by the premature aging phenotype of mitochondrial DNA polymerase gamma (POLG) exonuclease-deficient mice. Therefore, E1A immortalized murine embryonic fibroblasts (MEFs) from POLG exonuclease-deficient and wild-type (WT) mice were constructed. Surprisingly, when some E1A immortalized MEF lines were cultured in pyruvate-containing media they slowly became addicted to the pyruvate. The POLG exonuclease-deficient MEFs were more sensitive to several mitochondrial inhibitors and showed increased reactive oxygen species (ROS) production under standard conditions. When cultured in pyruvate-containing media, POLG exonuclease-deficient MEFs showed decreased oxygen consumption compared to controls. Increased AMP-activated protein kinase (AMPK) signaling and decreased mammalian target of rapamycin (mTOR) signaling delayed aging and influenced mitochondrial function. Therefore, the effects of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator, or rapamycin, an mTOR inhibitor, on measures of mitochondrial function were determined. Rapamycin treatment transiently increased respiration only in WT MEFs and, under most conditions, increased ATP levels. Short term AICAR treatment transiently increased ROS production and, under most conditions, decreased ATP levels. Chronic AICAR treatment decreased respiration and ROS production in WT MEFs. These results demonstrate the context-dependent effects of AICAR and rapamycin on mitochondrial function.
RESUMO
Parkinson's disease (PD) is a neurodegenerative disorder characterized by alpha-synuclein accumulation and loss of dopaminergic neurons in the substantia nigra (SN) region of the brain. Increased levels of alpha-synuclein have been shown to result in loss of mitochondrial electron transport chain complex I activity leading to increased reactive oxygen species (ROS) production. WT alpha-synuclein was stably overexpressed in human BE(2)-M17 neuroblastoma cells resulting in increased levels of an alpha-synuclein multimer, but no increase in alpha-synuclein monomer levels. Oxygen consumption was decreased by alpha-synuclein overexpression, but ATP levels did not decrease and ROS levels did not increase. Treatment with ferrous sulfate, a ROS generator, resulted in decreased oxygen consumption in both control and alpha-synuclein overexpressing cells. However, this treatment only decreased ATP levels and increased ROS production in the cells overexpressing alpha-synuclein. Similarly, paraquat, another ROS generator, decreased ATP levels in the alpha-synuclein overexpressing cells, but not in the control cells, further demonstrating how alpha-synuclein sensitized the cells to oxidative insult. Proteomic analysis yielded molecular insights into the cellular adaptations to alpha-synuclein overexpression, such as the increased abundance of many mitochondrial proteins. Many amino acids and citric acid cycle intermediates and their ester forms were individually supplemented to the cells with L-serine, L-proline, L-aspartate, or L-glutamine decreasing ROS production in oxidatively stressed alpha-synuclein overexpressing cells, while diethyl oxaloacetate or L-valine supplementation increased ATP levels. These results suggest that dietary supplementation with individual metabolites could yield bioenergetic improvements in PD patients to delay loss of dopaminergic neurons.