Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Enzyme Inhib Med Chem ; 39(1): 2289007, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38086763

RESUMO

We developed new iminosugar-based glycosidase inhibitors against SARS-CoV-2. Known drugs (miglustat, migalastat, miglitol, and swainsonine) were chosen as lead compounds to develop three classes of glycosidase inhibitors (α-glucosidase, α-galactosidase, and mannosidase). Molecular modelling of the lead compounds, synthesis of the compounds with the highest docking scores, enzyme inhibition tests, and in vitro antiviral assays afforded rationally designed inhibitors. Two highly active α-glucosidase inhibitors were discovered, where one of them is the most potent iminosugar-based anti-SARS-CoV-2 agent to date (EC90 = 1.94 µM in A549-ACE2 cells against Omicron BA.1 strain). However, galactosidase inhibitors did not exhibit antiviral activity, whereas mannosidase inhibitors were both active and cytotoxic. As our iminosugar-based drug candidates act by a host-directed mechanism, they should be more resilient to drug resistance. Moreover, this strategy could be extended to identify potential drug candidates for other viral infections.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Modelos Moleculares , Manosidases , Antivirais/farmacologia , Simulação de Acoplamento Molecular
2.
Exp Eye Res ; 207: 108575, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33864784

RESUMO

Sveinsson's chorioretinal atrophy (SCRA) or helicoidal peripapillary chorioretinal degeneration (HPCD) as previously referred, is a rare ocular disease with autosomal dominant pattern of inheritance. The vast majority of reported cases were of Icelandic origin but the characteristic clinical picture of SCRA was also described in patients of non-Icelandic descent. Here, we report a novel disease-causing variant c.1261T>A, p.Tyr421Asn in TEAD1, detected in a Serbian family from Bosnia diagnosed with SCRA. The newly discovered change occurred at the same position as the "Icelandic mutation" (c.1261T>C, p.Tyr421His). According to our findings, this position in the exon 13 of the TEAD1 gene, at base pair 94, should be considered as a mutation hotspot and a starting point for future genetic analyses of patients with SCRA diagnosis.


Assuntos
Distrofias Hereditárias da Córnea/genética , Proteínas de Ligação a DNA/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Degeneração Retiniana/genética , Fatores de Transcrição/genética , População Branca/genética , Adolescente , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Reação em Cadeia da Polimerase , Sérvia/epidemiologia , Fatores de Transcrição de Domínio TEA , Adulto Jovem
3.
Chem Res Toxicol ; 32(9): 1880-1892, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31381319

RESUMO

This paper discusses antioxidative and biological activities of 25 novel amidino substituted benzamides with a variety of heteroaromatic nuclei attached to the benzamide moiety and with a variable number of methoxy or hydroxy substituents. Targeted compounds, bearing either amidino or 2-imidazolinyl substituent, were obtained in the Pinner reaction from cyano precursors. 3D-QSAR models were generated to predict antioxidative activity of the 25 novel aromatic and heteroaromatic benzamide derivatives. The compounds were tested for antioxidative activity using in vitro spectrophotometric assays. Direct validation of 3D-QSAR approach for predicting activities of novel benzamide derivatives was carried out by comparing experimental and computationally predicted antioxidative activity. Experimentally determined activities for all novel compounds were found to be within a standard deviation of error of the models. Following this, structure-activity relationships among the synthesized compounds are discussed. Furthermore, antiproliferative activity in vitro against HeLa cells as well as antibacterial and antifungal activity was tested to confirm the other biological activities of the prepared compounds.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Benzamidas/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antioxidantes/síntese química , Antioxidantes/química , Aspergillus/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Benzamidas/síntese química , Benzamidas/química , Candida albicans/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Análise de Componente Principal , Relação Quantitativa Estrutura-Atividade , Saccharomyces cerevisiae/efeitos dos fármacos
4.
Appl Microbiol Biotechnol ; 102(4): 1889-1901, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29330691

RESUMO

Candida spp. are leading causes of opportunistic mycoses, including life-threatening hospital-borne infections, and novel antifungals, preferably aiming targets that have not been used before, are constantly needed. Hydrazone- and guanidine-containing molecules have shown a wide range of biological activities, including recently described excellent antifungal properties. In this study, four bis-guanylhydrazone derivatives (BG1-4) were generated following a previously developed synthetic route. Anti-Candida (two C. albicans, C. glabrata, and C. parapsilosis) minimal inhibitory concentrations (MICs) of bis-guanylhydrazones were between 2 and 15.6 µg/mL. They were also effective against preformed 48-h-old C. albicans biofilms. In vitro DNA interaction, circular dichroism, and molecular docking analysis showed the great ability of these compounds to bind fungal DNA. Competition with DNA-binding stain, exposure of phosphatidylserine at the outer layer of the cytoplasmic membrane, and activation of metacaspases were shown for BG3. This pro-apoptotic effect of BG3 was only partially due to the accumulation of reactive oxygen species in C. albicans, as only twofold MIC and higher concentrations of BG3 caused depolarization of mitochondrial membrane which was accompanied by the decrease of the activity of fungal mitochondrial dehydrogenases, while the activity of oxidative stress response enzymes glutathione reductase and catalase was not significantly affected. BG3 showed synergistic activity with amphotericin B with a fractional inhibitory concentration index of 0.5. It also exerted low cytotoxicity and the ability to inhibit epithelial cell (TR146) invasion and damage by virulent C. albicans SC5314. With further developments, BG3 may further progress in the antifungal pipeline as a DNA-targeting agent.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , DNA Fúngico/efeitos dos fármacos , Guanidinas/farmacologia , Hidrazonas/farmacologia , Antifúngicos/síntese química , Apoptose , Candida/fisiologia , Dicroísmo Circular , Sinergismo Farmacológico , Guanidinas/síntese química , Hidrazonas/síntese química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular
5.
J Enzyme Inhib Med Chem ; 32(1): 298-303, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28100083

RESUMO

The inhibitory activities of selected cyclic urea and carbamate derivatives (1-13) toward α-glucosidase (α-Gls) in in vitro assay were examined in this study. All examined compounds showed higher inhibitory activity (IC50) against α-Gls compared to standard antidiabetic drug acarbose. The most potent was benzyl (3,4,5-trimethoxyphenyl)carbamate (12) with IC50 = 49.85 ± 0.10 µM. In vitro cytotoxicity of the investigated compounds was tested on three human cancer cell lines HeLa, A549 and MDA-MB-453 using MTT assay. The best antitumour activity was achieved with compound 2 (trans-5-phenethyl-1-phenylhexahydro-1H-imidazo[4,5-c]pyridin-2(3H)-one) against MDA-MB-453 human breast cancer cell line (IC50 = 83.41 ± 1.60 µM). Cyclic ureas and carbamates showed promising anti-α-glucosidase activity and should be further tested as potential antidiabetic drugs. The PLS model of preliminary QSAR study indicated that, in planing the future synthesis of more potent compounds, the newly designed should have the substituents capable of polar interactions with receptor sites in various positions, while avoiding the increase of their lipophilicity.


Assuntos
Carbamatos/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Ureia/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Relação Estrutura-Atividade
6.
J Biol Inorg Chem ; 21(3): 357-68, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26910415

RESUMO

We analyzed the potential influence of anion-π interactions on the stability of complexes of proteins and halogen-containing non-natural amino acids. Anion-π interactions are distance and orientation dependent and our ab initio calculations showed that their energy can be lower than -8 kcal mol(-1), while most of their interaction energies lie in the range from -1 to -4 kcal mol(-1). About 20 % of these interactions were found to be repulsive. We have observed that Tyr has the highest occurrence among the aromatic residues involved in anion-π interactions, while His made the least contribution. Furthermore, our study showed that 67 % of total interactions in the dataset are multiple anion-π interactions. Most of the amino acid residues involved in anion-π interactions tend to be buried in the solvent-excluded environment. The majority of the anion-π interacting residues are located in regions with helical secondary structure. Analysis of stabilization centers for these complexes showed that all of the six residues capable of anion-π interactions are important in locating one or more of such centers. We found that anion-π interacting residues are sometimes involved in simultaneous interactions with halogens as well. With all that in mind, we can conclude that the anion-π interactions can show significant influence on molecular organization and on the structural stability of the complexes of proteins and halogen-containing non-natural amino acids. Their influence should not be neglected in supramolecular chemistry and crystal engineering fields as well.


Assuntos
Aminoácidos/química , Halogênios/química , Proteínas/química , Ânions/química , Teoria Quântica , Termodinâmica
7.
Biomed Pharmacother ; 174: 116496, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537581

RESUMO

Two novel hybrid compounds, CON1 and CON2, have been developed by combining sclareol (SC) and doxorubicin (DOX) into a single molecular entity. These hybrid compounds have a 1:1 molar ratio of covalently linked SC and DOX. They have demonstrated promising anticancer properties, especially in glioblastoma cells, and have also shown potential in treating multidrug-resistant (MDR) cancer cells that express the P-glycoprotein (P-gp) membrane transporter. CON1 and CON2 form nanoparticles, as confirmed by Zetasizer, transmission electron microscopy (TEM), and chemical modeling. TEM also showed that CON1 and CON2 can be found in glioblastoma cells, specifically in the cytoplasm, different organelles, nucleus, and nucleolus. To examine the anticancer properties, the U87 glioblastoma cell line, and its corresponding multidrug-resistant U87-TxR cell line, as well as patient-derived astrocytoma grade 3 cells (ASC), were used, while normal human lung fibroblasts were used to determine the selectivity. CON1 and CON2 exhibited better resistance and selectivity profiles than DOX, showing less cytotoxicity, as evidenced by real-time cell analysis, DNA damage determination, cell death induction, mitochondrial respiration, and mitochondrial membrane depolarization studies. Cell cycle analysis and the ß-galactosidase activity assay suggested that glioblastoma cells die by senescence following CON1 treatment. Overall, CON1 and CON2 showed great potential as they have better anticancer features than DOX. They are promising candidates for additional preclinical and clinical studies on glioblastoma.


Assuntos
Doxorrubicina , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Doxorrubicina/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Diterpenos/farmacologia , Diterpenos/química , Nanopartículas/química , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Dano ao DNA/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos
8.
Bioconjug Chem ; 23(1): 57-65, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22148500

RESUMO

A conjugate of lysozyme with avarone, a bioactive sesquiterpene quinone of marine origin, and its three derivatives were synthesized. MALDI TOF mass spectral analysis and tryptic digestion showed that the only residue in lysozyme that was modified by all derivatives was lysine 97. The identity of the residue was in full correlation with the prediction obtained by molecular modeling. All bioconjugates preserved most of the enzymatic activity of lysozyme. The melting point of the conjugates was slightly increased in comparison to lysozyme, indicating a slight stabilization of structure. The antibacterial activity of all the conjugates to both Gram positive and Gram negative bacteria was stronger than the activity of either lysozyme or the quinones, the MIC values being in low micromolar range for some conjugates.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Cicloexenos/química , Cicloexenos/farmacologia , Muramidase/química , Muramidase/metabolismo , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Bactérias/efeitos dos fármacos , Ativação Enzimática , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Temperatura
9.
Comput Biol Chem ; 100: 107752, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35963077

RESUMO

The influences of cation-π interactions in phycocyanin proteins and their environmental preferences were analyzed. The number of interactions formed by arginine showed to be higher than those formed by the lysine in the cationic group, while histidine is comparatively higher than phenylalanine and N-terminal residue in the π group. Arg-Tyr and Arg-Phe interacting pairs are predominant among the various pairs analyzed. Cation-π interactions are distance-dependent and can be realized above a wider area above the π ring. We analyzed the energy contribution resulting from cation-π interactions using ab initio calculations. The energy contribution resulting from the most frequent cation-π interactions was in the lower range of strong hydrogen bonds. The results showed that, while most of their interaction energies lay ranged from - 2 to - 8 kcal/mol, those energies could be up to -12- 12 kcal/mol. Stabilization centers for these proteins showed that all residues found in cation-π interactions are important in locating one or more of such centers. In the cation-π interacting residues, 54% of the amino acid residues involved in these interactions might be conserved in phycocyanins. From this study, we infer that cation-π forming residues play an important role in the stability of the multiply commercially used phycocyanin proteins and could help structural biologists and medicinal chemists to design better and safer drugs.


Assuntos
Ficocianina , Proteínas , Aminoácidos/química , Cátions/química , Ligação de Hidrogênio , Proteínas/química
10.
Pharmaceutics ; 14(6)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35745878

RESUMO

Considering that acetylcholinesterase (AChE) inhibition is the most important mode of action expected of a potential drug used for the treatment of symptoms of Alzheimer's disease (AD), our previous pilot study of 4-aminoquinolines as potential human cholinesterase inhibitors was extended to twenty-two new structurally distinct 4-aminoquinolines bearing an adamantane moiety. Inhibition studies revealed that all of the compounds were very potent inhibitors of AChE and butyrylcholinesterase (BChE), with inhibition constants (Ki) ranging between 0.075 and 25 µM. The tested compounds exhibited a modest selectivity between the two cholinesterases; the most selective for BChE was compound 14, which displayed a 10 times higher preference, while compound 19 was a 5.8 times more potent inhibitor of AChE. Most of the compounds were estimated to be able to cross the blood-brain barrier (BBB) by passive transport. Evaluation of druglikeness singled out fourteen compounds with possible oral route of administration. The tested compounds displayed modest but generally higher antioxidant activity than the structurally similar AD drug tacrine. Compound 19 showed the highest reducing power, comparable to those of standard antioxidants. Considering their simple structure, high inhibition of AChE and BChE, and ability to cross the BBB, 4-aminoquinoline-based adamantanes show promise as structural scaffolds for further design of novel central nervous system drugs. Among them, two compounds stand out: compound 5 as the most potent inhibitor of both cholinesterases with a Ki constant in low nano molar range and the potential to cross the BBB, and compound 8, which met all our requirements, including high cholinesterase inhibition, good oral bioavailability, and antioxidative effect. The QSAR model revealed that AChE and BChE inhibition was mainly influenced by the ring and topological descriptors MCD, Nnum, RP, and RSIpw3, which defined the shape, conformational flexibility, and surface properties of the molecules.

11.
J Sep Sci ; 34(19): 2659-67, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21805630

RESUMO

Both quantitative structure-retention (QSRR) and quantitative structure-activity relationship (QSAR) studies have been performed to correlate the molecular characteristics of seven pairs of cis-trans isomeric bis-steroidal tetraoxanes with their reversed-phase thin-layer chromatography (RPTLC) retention as well as with their antiproliferative activity. 2D and 3D molecular descriptors as whole molecule representations together with retention parameters as well as with biological activity data were subjected to the multivariate statistical analysis (principal component analysis--PCA and hierarchical cluster analysis--HCA) in order to determine the most influential factors governing the retention and activity against human cervix carcinoma (HeLa) and human malignant melanoma (Fem-X) cell lines. Both QSRR and QSAR models were built by means of the partial least-squares (PLS) statistical method. It was found that hydrogen bond donating (HBD), hydrogen bond accepting (HBAcc), hydrophilic surface percentage (%HS) and hydrophilic-lipophilic balance (HLB) exhibit the strongest influence on retention. The most prominent factors affecting antiproliferative activity of the investigated substances are those relating to the size and shape of a molecule such as: connectivity indices, refractivity (Ref), surface area (SA), molecular volume and weight, polarizability (Pol) and those regarding the ability of hydrogen bonding (HB).


Assuntos
Antineoplásicos/química , Ácido Cólico/química , Tetraoxanos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ácido Cólico/farmacologia , Cromatografia em Camada Fina , Humanos , Isomerismo , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Tetraoxanos/farmacologia
12.
Fitoterapia ; 142: 104520, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32088280

RESUMO

Chemical and biocatalytic synthesis of seven previously undescribed marchantin A ester derivatives has been presented. Chemical synthesis afforded three peresterified bisbibenzyl products (TE1-TE3), while enzymatic method, using lipase, produced regioselective monoester derivatives (ME1-ME4). The antiproliferative activities of all prepared derivatives of marchantin A were tested on MRC-5 healthy human lung fibroblast, A549 human lung cancer, and MDA-MB-231 human breast cancer cell lines. All tested esters were less cytotoxic in comparison to marchantin A, but they also exhibited lower cytotoxicity against healthy cells. Monoesters displayed higher cytotoxic activities than the corresponding peresterified products, presumably due to the presence of free catechol group. Monohexanoyl ester ME3 displayed the same IC50 like marchantin A against MDA-MB-231 cells, but the selectivity was higher. In this way, regioselective enzymatic monoesterification enhanced selectivity of marchantin A. ME3 was also the most active among all derivatives against lung cancer cells A549 with the slightly lower activity and selectivity in comparison to marchantin A.


Assuntos
Antineoplásicos Fitogênicos/química , Bibenzilas/química , Éteres Cíclicos/química , Células A549 , Antineoplásicos Fitogênicos/toxicidade , Bibenzilas/toxicidade , Ensaios de Seleção de Medicamentos Antitumorais , Esterificação , Éteres Cíclicos/toxicidade , Humanos
13.
Vaccines (Basel) ; 8(4)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271962

RESUMO

Vaccines can have heterologous effects on the immune system, i.e., effects other than triggering an immune response against the disease targeted by the vaccine. We investigated whether monoclonal antibodies (mAbs) specific for tetanus could cross-react with Chlamydia and confer heterologous protection against chlamydial infection. The capability of two tetanus-specific mAbs, namely mAb26 and mAb51, to prevent chlamydial infection has been assessed: (i) in vitro, by performing a neutralization assay using human conjunctival epithelial (HCjE) cells infected with Chlamydia trachomatis serovar B, and (ii) in vivo, by using a guinea pig model of Chlamydiacaviae-induced inclusion conjunctivitis. The mAb26 has been superior in comparison with mAb51 in the prevention of chlamydial infection in HCjE cells. The mAb26 has conferred ≈40% inhibition of the infection, compared to less than 5% inhibition in the presence of the mAb51. In vivo, mAb26 significantly diminished ocular pathology intensity in guinea pigs infected with C. caviae compared to either the mAb51-treated or sham-treated guinea pigs. Our data provide insights that tetanus immunization generates antibodies which induce heterologous chlamydial immunity and promote protection beyond the intended target pathogen.

14.
Mol Inform ; 38(11-12): e1800145, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31535472

RESUMO

Protein-protein interactions are an important phenomenon in biological processes and functions. We used the manually curated non-redundant dataset of 118 phycocyanin interfaces to gain additional insight into this phenomenon using a robust inter-atomic non-covalent interaction analyzing tool PPCheck. Our observations indicate that there is a relatively high composition of hydrophobic residues at the interfaces. Most of the interface residues are clustered at the middle of the range which we call "standard-size" interfaces. Furthermore, the multiple interaction patterns founded in the present study indicate that more than half of the residues involved in these interactions participate in multiple and water-bridged hydrogen bonds. Thus, hydrogen bonds contribute maximally towards the stability of protein-protein complexes. The analysis shows that hydrogen bond energies contribute to about 88 % to the total energy and it also increases with interface size. Van der Waals (vdW) energy contributes to 9.3 %±1.7 % on average in these complexes. Moreover, there is about 1.9 %±1.5 % contribution by electrostatic energy. Nevertheless, the role by vdW and electrostatic energy could not be ignored in interface binding. Results show that the total binding energy is more for large phycocyanin interfaces. The normalized energy per residue was less than -16 kJ mol-1 , while most of them have energy in the range from -6 to -14 kJ mol-1 . The non-covalent interacting residues in these proteins were found to be highly conserved. Obtained results might contribute to the understanding of structural stability of this class of evolutionary essential proteins with increased practical application and future designs of novel protein-bioactive compound interactions.


Assuntos
Ficocianina/química , Algoritmos , Bases de Dados de Proteínas , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ligação Proteica , Eletricidade Estática , Termodinâmica
15.
ACS Chem Biol ; 14(12): 2800-2809, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31647218

RESUMO

Pseudomonas aeruginosa is a leading cause of nosocomial infections that are becoming increasingly difficult to treat due to the occurrence of antibiotic resistant strains. Since P. aeruginosa virulence is controlled through quorum sensing, small molecule treatments inhibiting quorum sensing signaling pathways provide a promising therapeutic option. Consequently, we synthesized a series of N-octaneamino-4-aminoquinoline derivatives to optimize this chemotype's antivirulence activity against P. aeruginosa via inhibition of pyocyanin production. The most potent derivative, which possesses a benzofuran substituent, provided effective inhibition of pyocyanin production (IC50 = 12 µM), biofilm formation (BFIC50 = 50 µM), and motility. Experimentally, the compound's activity is achieved through competitive inhibition of PqsR, and structure-activity data were rationalized using molecular docking studies.


Assuntos
Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/antagonistas & inibidores , Piocianina/biossíntese , Quinolinas/farmacologia , Biofilmes , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Pseudomonas aeruginosa/metabolismo , Relação Quantitativa Estrutura-Atividade , Quinolinas/química
16.
Int J Biol Macromol ; 106: 559-568, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28811207

RESUMO

We investigated 1060 possible anion-π interactions in a data set of 41 superoxide dismutase active centers. Our observations indicate that majority of the aromatic residues are capable to form anion-π interactions, mainly by long-range contacts, and that there is preference of Trp over other aromatic residues in these interactions. Furthermore, 68% of total predicted interactions in the dataset are multiple anion-π interactions. Anion-π interactions are distance and orientation dependent. We analyzed the energy contribution resulting from anion-π interactions using ab initio calculations. The results showed that, while most of their interaction energies lay in the range from -0 to -4kcalmol-1, those energies can be up to -9kcalmol-1 and about 34% of interactions were found to be repulsive. Majority of the suggested anion-π interacting residues in ternary complexes are metal-assisted. Stabilization centers for these proteins showed that all the six residues found in predicted anion-π interactions are important in locating one or more of such centers. The anion-π interacting residues in these proteins were found to be highly conserved. We hope that these studies might contribute useful information regarding structural stability and its interaction in future designs of novel metalloproteins.


Assuntos
Ácido Acético/química , Cresóis/química , Histidina/química , Escatol/química , Superóxido Dismutase/química , Tolueno/química , Ácido Acético/metabolismo , Domínio Catalítico , Coxiella burnetii/química , Coxiella burnetii/enzimologia , Cresóis/metabolismo , Bases de Dados de Proteínas , Conjuntos de Dados como Assunto , Histidina/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Químicos , Modelos Moleculares , Neisseria meningitidis/química , Neisseria meningitidis/enzimologia , Propionibacterium/química , Propionibacterium/enzimologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Escatol/metabolismo , Superóxido Dismutase/metabolismo , Termodinâmica , Tolueno/metabolismo
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 192: 128-139, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29128746

RESUMO

Interactions between eight in-house synthesized aminoquinolines, along with well-known chloroquine, and human serum albumin (HSA) have been studied by fluorescence spectroscopy. The synthesized aminoquinolines, despite being structurally diverse, were found to be very potent antimalarials. Fluorescence measurements indicate that three compounds having additional thiophene or benzothiophene substructure bind more strongly to HSA than other studied compounds. Competitive binding experiments indicate that these three compounds bind significantly stronger to warfarin compared to diazepam binding site. Fluorescence quenching at three temperatures (20, 25, and 37°C) was analyzed using classical Stern-Volmer equation, and a static quenching mechanism was proposed. The enthalpy and entropy changes upon sulphur-containing compound-HSA interactions were calculated using Van't Hoff equation. Positive values of enthalpy and entropy changes indicate that non-specific, hydrophobic interactions are the main contributors to HSA-compound interaction. Molecular docking and calculated lipophilicity descriptors indicate the same, pointing out that the increased lipophilicity of sulphur-containing compounds might be a reason for their better binding to HSA. Obtained results might contribute to design of novel derivatives with improved pharmacokinetic properties and drug efficacy.


Assuntos
Antimaláricos/metabolismo , Albumina Sérica Humana/metabolismo , Antimaláricos/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Humanos , Cinética , Ligantes , Simulação de Acoplamento Molecular , Plasmodium/efeitos dos fármacos , Ligação Proteica , Albumina Sérica Humana/química , Espectrometria de Fluorescência , Termodinâmica
18.
ACS Chem Biol ; 12(5): 1425-1434, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28350449

RESUMO

Antibiotic resistance has become a serious global threat to public health; therefore, improved strategies and structurally novel antimicrobials are urgently needed to combat infectious diseases. Here we report a new type of highly potent 4-aminoquinoline derivatives as quorum sensing inhibitors in Serratia marcescens and Pseudomonas aeruginosa, exhibiting weak bactericidal activities (minimum inhibitory concentration (MIC) > 400 µM). Through detailed structure-activity study, we have identified 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines (5 and 10) as biofilm formation inhibitors with 50% biofilm inhibition at 69 µM and 63 µM in S. marcescens and P. aeruginosa, respectively. These two compounds, 5 and 10, are the first quinoline derivatives with anti-biofilm formation activity reported in S. marcescens. Quantitative structure-activity relationship (QSAR) analysis identified structural descriptors such as Wiener indices, hyper-distance-path index (HDPI), mean topological charge (MTC), topological charge index (TCI), and log D(o/w)exp as the most influential in biofilm inhibition in this bacterial species. Derivative 10 is one of the most potent quinoline type inhibitors of pyocyanin production described so far (IC50 = 2.5 µM). While we have demonstrated that 5 and 10 act as Pseudomonas quinolone system (PQS) antagonists, the mechanism of inhibition of S. marcescens biofilm formation with these compounds remains open since signaling similar to P. aeruginosa PQS system has not yet been described in Serratia and activity of these compounds on acylhomoserine lactone (AHL) signaling has not been detected. Our data show that 7-Cl and 7-CF3 substituted N-dodecylamino-4-aminoquinolines present the promising scaffolds for developing antivirulence and anti-biofilm formation agents against multidrug-resistant bacterial species.


Assuntos
Aminoquinolinas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Serratia marcescens/efeitos dos fármacos , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Relação Quantitativa Estrutura-Atividade
19.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1012-1013: 144-52, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26827282

RESUMO

The chromatographic behaviour of series of 4-amino-7-chloroquinoline (4,7-ACQ) based compounds was studied by reversed-phase thin-layer chromatography (RPTLC) with binary mobile phases containing water and the organic modifiers, DMSO or acetone. The lipophilicity of the studied compounds was determined by extrapolation of retention parameters RM to pure water content in mobile phase. In order to obtain some basic insight into the chromatographic behaviour and structural features of investigated compounds, PCA was performed on both chromatographic data (RM values) and calculated 2D and 3D structural descriptors. Both QSRR and QSAR models were built by means of the partial least squares (PLS) statistical method. It was found that descriptors which encode hydrophobic (dispersive) interactions have positive influence on retention, while influence of descriptors encoding polar interactions was negative. According to the obtained PLS model for inhibition of botulinum neurotoxin serotype A light chain, hydrophobic interactions influence positively on the mechanism of action of the investigated 4,7-ACQ, while polar interactions are less favoured. Contrary, the results of PLS modelling of activity against Plasmodium falciparum strains (W2, D6 and TM91C235) indicate that higher polarity of 4,7-ACQ contribute to their higher antimalarial activity.


Assuntos
Quinolinas/análise , Quinolinas/química , Cromatografia em Camada Fina/métodos , Interações Hidrofóbicas e Hidrofílicas , Relação Quantitativa Estrutura-Atividade
20.
J Med Chem ; 59(1): 264-81, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26640981

RESUMO

The syntheses and antiplasmodial activities of various substituted aminoquinolines coupled to an adamantane carrier are described. The compounds exhibited pronounced in vitro and in vivo activity against Plasmodium berghei in the Thompson test. Tethering a fluorine atom to the aminoquinoline C(3) position afforded fluoroaminoquinolines that act as intrahepatocytic parasite inhibitors, with compound 25 having an IC50 = 0.31 µM and reducing the liver load in mice by up to 92% at 80 mg/kg dose. Screening our peroxides as inhibitors of liver stage infection revealed that the tetraoxane pharmacophore itself is also an excellent liver stage P. berghei inhibitor (78: IC50 = 0.33 µM). Up to 91% reduction of the parasite liver load in mice was achieved at 100 mg/kg. Examination of tetraoxane 78 against the transgenic 3D7 strain expressing luciferase under a gametocyte-specific promoter revealed its activity against stage IV-V Plasmodium falciparum gametocytes (IC50 = 1.16 ± 0.37 µM). To the best of our knowledge, compounds 25 and 78 are the first examples of either an 4-aminoquinoline or a tetraoxane liver stage inhibitors.


Assuntos
Aminoquinolinas/síntese química , Aminoquinolinas/farmacologia , Antimaláricos/síntese química , Antimaláricos/farmacologia , Tetraoxanos/síntese química , Tetraoxanos/farmacologia , Aminoquinolinas/metabolismo , Animais , Antimaláricos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Hemina/antagonistas & inibidores , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro , Fígado/parasitologia , Camundongos , Microssomos Hepáticos/metabolismo , Carga Parasitária , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade , Tetraoxanos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA