Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37242959

RESUMO

Poly(lactic acid) (PLA) composites with 0.5 wt% lignin or nanolignin were prepared with two different techniques: (a) conventional melt-mixing and (b) in situ Ring Opening Polymerization (ROP) by reactive processing. The ROP process was monitored by measuring the torque. The composites were synthesized rapidly using reactive processing that took under 20 min. When the catalyst amount was doubled, the reaction time was reduced to under 15 min. The dispersion, thermal transitions, mechanical properties, antioxidant activity, and optical properties of the resulting PLA-based composites were evaluated with SEM, DSC, nanoindentation, DPPH assay, and DRS spectroscopy. All reactive processing-prepared composites were characterized by means of SEM, GPC, and NMR to assess their morphology, molecular weight, and free lactide content. The benefits of the size reduction of lignin and the use of in situ ROP by reactive processing were demonstrated, as the reactive processing-produced nanolignin-containing composites had superior crystallization, mechanical, and antioxidant properties. These improvements were attributed to the participation of nanolignin in the ROP of lactide as a macroinitiator, resulting in PLA-grafted nanolignin particles that improved its dispersion.

2.
Nanomaterials (Basel) ; 11(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34684984

RESUMO

The photocatalytic oxidation (PCO) of pollutants using TiO2-based materials can significantly improve indoor air quality (IAQ), which in turn, has a significant impact on human health and life expectancy. TiO2-based nanoparticles (NPs) are widely used as part of building materials to function as photocatalysts in PCO. In this work, a series of sulfur-doped TiO2 NPs immobilized on a silica matrix were synthesized by combining a sol-gel process with ball milling. The samples were structurally characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy (FT-IR) and N2 adsorption-desorption isotherms. Furthermore, the morphological characteristics were determined by dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocatalytic activity of the as prepared S-doped TiO2/SiO2 NPs in the degradation of liquid and air pollutants under visible-light irradiation was investigated. Our results show that sulfur is an effective dopant for activating TiO2/SiO2 photocatalysts under visible-light irradiation. Silica constitutes a "safe-by-design" approach and inhibits the aggregation of NPs during synthesis. The most efficient photocatalyst afforded 79% removal of methyl orange (5 h), 26% removal of acetaldehyde (1 h) and 12% oxidation of NO (1 h).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA