Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467450

RESUMO

Fear extinction requires coordinated neural activity within the amygdala and medial prefrontal cortex (mPFC). Any behavior has a transcriptomic signature that is modified by environmental experiences, and specific genes are involved in functional plasticity and synaptic wiring during fear extinction. Here, we investigated the effects of optogenetic manipulations of prelimbic (PrL) pyramidal neurons and amygdala gene expression to analyze the specific transcriptional pathways associated to adaptive and maladaptive fear extinction. To this aim, transgenic mice were (or not) fear-conditioned and during the extinction phase they received optogenetic (or sham) stimulations over photo-activable PrL pyramidal neurons. At the end of behavioral testing, electrophysiological (neural cellular excitability and Excitatory Post-Synaptic Currents) and morphological (spinogenesis) correlates were evaluated in the PrL pyramidal neurons. Furthermore, transcriptomic cell-specific RNA-analyses (differential gene expression profiling and functional enrichment analyses) were performed in amygdala pyramidal neurons. Our results show that the optogenetic activation of PrL pyramidal neurons in fear-conditioned mice induces fear extinction deficits, reflected in an increase of cellular excitability, excitatory neurotransmission, and spinogenesis of PrL pyramidal neurons, and associated to strong modifications of the transcriptome of amygdala pyramidal neurons. Understanding the electrophysiological, morphological, and transcriptomic architecture of fear extinction may facilitate the comprehension of fear-related disorders.


Assuntos
Tonsila do Cerebelo/fisiologia , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Células Piramidais/fisiologia , Transcriptoma/genética , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/metabolismo , Animais , Fenômenos Eletrofisiológicos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Medo/psicologia , Masculino , Memória/fisiologia , Camundongos Transgênicos , Vias Neurais/citologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Optogenética/métodos , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Células Piramidais/metabolismo , Transmissão Sináptica/fisiologia
2.
Neurobiol Dis ; 130: 104532, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31302244

RESUMO

Cortical hyperexcitability is an early and intrinsic feature of Amyotrophic Lateral Sclerosis (ALS), but the mechanisms underlying this critical neuronal dysfunction are poorly understood. Recently, we have demonstrated that layer V pyramidal neurons (PNs) in the primary motor cortex (M1) of one-month old (P30) G93A ALS mice display an early hyperexcitability status compared to Control mice. In order to investigate the time-dependent evolution of the cortical excitability in the G93A ALS model, here we have performed an electrophysiological and immunohistochemical study at three different mouse ages. M1 PNs from 14-days old (P14) G93A mice have shown no excitability alterations, while M1 PNs from 3-months old (P90) G93A mice have shown a hypoexcitability status, compared to Control mice. These age-dependent cortical excitability dysfunctions correlate with a similar time-dependent trend of the persistent sodium current (INaP) amplitude alterations, suggesting that INaP may play a crucial role in the G93A cortical excitability aberrations. Specifically, immunohistochemistry experiments have indicated that the expression level of the NaV1.6 channel, one of the voltage-gated Na+ channels mainly distributed within the central nervous system, varies in G93A primary motor cortex during disease progression, according to the excitability and INaP alterations, but not in other cortical areas. Microfluorometry experiments, combined with electrophysiological recordings, have verified that P30 G93A PNs hyperexcitability is associated to a greater accumulation of intracellular calcium ([Ca2+]i) compared to Control PNs, and that this difference is still present when G93A and Control PNs fire action potentials at the same frequency. These results suggest that [Ca2+]i de-regulation in G93A PNs may contribute to neuronal demise and that the NaV1.6 channels could be a potential therapeutic target to ameliorate ALS disease progression.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Córtex Motor/fisiopatologia , Neurônios Motores/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Potenciais de Ação/fisiologia , Fatores Etários , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , Córtex Motor/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/genética
3.
J Mol Cell Cardiol ; 118: 95-109, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29551391

RESUMO

Myotonic Dystrophy type 1 (DM1) is a multisystemic disease, autosomal dominant, caused by a CTG repeat expansion in DMPK gene. We assessed the appropriateness of patient-specific induced pluripotent stem cell-derived cardiomyocytes (CMs) as a model to recapitulate some aspects of the pathogenetic mechanism involving cardiac manifestations in DM1 patients. Once obtained in vitro, CMs have been characterized for their morphology and their functionality. CMs DM1 show intranuclear foci and transcript markers abnormally spliced respect to WT ones, as well as several irregularities in nuclear morphology, probably caused by an unbalanced lamin A/C ratio. Electrophysiological characterization evidences an abnormal profile only in CMs DM1 such that the administration of antiarrythmic drugs to these cells highlights even more the functional defect linked to the disease. Finally, Atomic Force Measurements reveal differences in the biomechanical behaviour of CMs DM1, in terms of frequencies and synchronicity of the beats. Altogether the complex phenotype described in this work, strongly reproduces some aspects of the human DM1 cardiac phenotype. Therefore, the present study provides an in vitro model suggesting novel insights into the mechanisms leading to the development of arrhythmogenesis and dilatative cardiomyopathy to consider when approaching to DM1 patients, especially for the risk assessment of sudden cardiac death (SCD). These data could be also useful in identifying novel biomarkers effective in clinical settings and patient-tailored therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Miocárdio/patologia , Miócitos Cardíacos/patologia , Distrofia Miotônica/patologia , Adulto , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Fenômenos Biomecânicos , Diferenciação Celular , Forma do Núcleo Celular , Reprogramação Celular , Fenômenos Eletrofisiológicos , Feminino , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Laminas/metabolismo , Masculino , Pessoa de Meia-Idade , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Distrofia Miotônica/fisiopatologia , Fenótipo
4.
Biochim Biophys Acta Mol Basis Dis ; 1864(2): 509-519, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29154925

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a chronic neurodegenerative disease affecting upper and lower motor neurons, with unknown aetiology. Lipid rafts, cholesterol enriched microdomains of the plasma membrane, have been linked to neurodegenerative disorders like ALS. The NMDA-receptor subcellular localization in lipid rafts is known to play many roles, from modulating memory strength to neurotoxicity. In this study, performed on the widely used G93A mouse model of ALS, we have shown an equal content of total membrane cholesterol in Control and G93A cortical cultures. Moreover, by electrophysiological studies, we have recorded NMDA- and AMPA-evoked currents which were not significantly different between the two neuronal populations. To study the role of membrane cholesterol on glutamate receptor functionality, we have analysed NMDA and AMPA receptors following cholesterol membrane depletion by methyl-ß-cyclodextrin (MßCD). Interestingly, MßCD chronic treatment has provoked a significant reduction of NMDA-evoked currents in both cellular populations which was dose- and time-dependent but significantly higher in ALS neurons compared to Control. The different MßCD effect on NMDA-evoked currents was not due to a different membrane receptor subunit composition but seemed to cause in both neuronal populations a NMDA receptor membrane redistribution. MßCD treatment effect was receptor-specific since no alterations in the two neuronal populations were detected on AMPA receptors. These results lead us to speculate for an altered proteomic composition of lipid rafts in cortical mutated neurons and suggest the need for further studies on the lipid rafts composition and on their interaction with membrane receptors in ALS cortices.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/química , Neurônios Motores/citologia , N-Metilaspartato/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Membrana Celular/metabolismo , Sobrevivência Celular , Modelos Animais de Doenças , Eletrofisiologia , Feminino , Ácido Glutâmico/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Proteômica , Receptores de AMPA/metabolismo , Transdução de Sinais , Superóxido Dismutase-1/genética , beta-Ciclodextrinas/farmacologia
5.
Biochim Biophys Acta ; 1862(4): 566-575, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26721313

RESUMO

L-valine is a branched-chain amino acid (BCAA) largely used as dietary integrator by athletes and involved in some inherited rare diseases such as maple syrup urine disease. This pathology is caused by an altered BCAA metabolism with the accumulation of toxic keto acids in tissues and body fluids with consequent severe neurological symptoms. In animal models of BCAA accumulation, increased oxidative stress levels and lipid peroxidation have been reported. The aim of this study was to analyze both whether high BCAA concentrations in neurons induce reactive oxygen species (ROS) production and whether, by performing electrophysiological recordings, the neuronal functional properties are modified. Our results demonstrate that in primary cortical cultures, a high dose of valine increases ROS production and provokes neuronal hyperexcitability because the action potential frequencies and the persistent sodium current amplitudes increase significantly compared to non-treated neurons. Since Baicalein, a flavone obtained from the Scutellaria root, has been shown to act as a strong antioxidant with neuroprotective effects, we evaluated its possible antioxidant activity in primary cortical neurons chronically exposed to L-valine. The preincubation of cortical neurons with Baicalein prevents the ROS production and is able to revert both the neuronal hyperexcitability and the increase of the persistent sodium current, indicating a direct correlation between the ROS production and the altered physiological parameters. In conclusion, our data show that the electrophysiological alterations of cortical neurons elicited by high valine concentration are due to the increase in ROS production, suggesting much caution in the intake of BCAA dietary integrators.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Córtex Cerebral/metabolismo , Flavanonas/farmacologia , Neurônios/metabolismo , Sódio/metabolismo , Valina/farmacologia , Animais , Células Cultivadas , Córtex Cerebral/citologia , Camundongos , Neurônios/citologia , Espécies Reativas de Oxigênio/metabolismo
6.
Cell Rep ; 42(9): 113066, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37656620

RESUMO

Fear-related disorders arise from inefficient fear extinction and have immeasurable social and economic costs. Here, we characterize mouse phenotypes that spontaneously show fear-independent behavioral traits predicting adaptive or maladaptive fear extinction. We find that, already before fear conditioning, specific morphological, electrophysiological, and transcriptomic patterns of cortical and amygdala pyramidal neurons predispose to fear-related disorders. Finally, by using an optogenetic approach, we show the possibility to rescue inefficient fear extinction by activating infralimbic pyramidal neurons and to impair fear extinction by activating prelimbic pyramidal neurons.


Assuntos
Medo , Córtex Pré-Frontal , Camundongos , Animais , Córtex Pré-Frontal/fisiologia , Medo/fisiologia , Transcriptoma/genética , Extinção Psicológica/fisiologia , Tonsila do Cerebelo/fisiologia , Células Piramidais/fisiologia
7.
Neurobiol Dis ; 44(1): 92-101, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21726643

RESUMO

Substance P (SP), a neuropeptide member of the tachykinin (TK) family, has a functional role both in physiological and pathological conditions, including Amyotrophic Lateral Sclerosis disease. One hypothesis of the selective motor neuron death in ALS involves the excitatory neurotransmitter glutamate, because these neurons are extremely susceptible to excessive stimulation of AMPA receptors. It has been reported that SP exerts its action against a variety of insults including excitotoxicity, and that altered levels of SP have been observed in the cerebrospinal fluid (CSF) of patients with ALS. Here we have analyzed the interaction between SP and AMPA receptor functionality, both in Control cortical neurons in culture and in those obtained from a genetic mouse model of ALS (G93A). Our studies demonstrate that SP reduces the kainate-activated currents in Control and G93A neurons and that this reduction is significantly higher in the mutated neurons. SP effect is mediated by its receptor NK1 because GR 82334 (5 µM), a NK1 competitive antagonist, is able to suppress the current reduction. Analysis of miniature excitatory postsynaptic currents (mEPSCs) in Control and G93A neurons indicates that SP (200 nM) is able to significantly decrease the mEPSC amplitudes in G93A neurons, whereas it is ineffective on Control mEPSCs. Western blotting experiments in cultures and cortical tissues show a higher NK1 expression level in G93A mice compared to that of Control. This is also confirmed by immunocytochemistry experiments in cultured neurons. In addition, the amount of GluR1 subunit AMPA receptors is not modified following SP exposure, indicating a non internalization of the AMPA receptors. Finally, toxicity experiments have revealed that SP is able to rescue G93A cortical cells whereas it is ineffective on those of Control. These findings provide the first evidence of SP having a physiological and protective role in the G93A mouse model of ALS, and may suggest the possible use of SP as a clinical therapeutic treatment.


Assuntos
Esclerose Lateral Amiotrófica/genética , Córtex Cerebral/fisiologia , Neurônios/metabolismo , Receptores de AMPA/efeitos dos fármacos , Receptores da Neurocinina-1/efeitos dos fármacos , Esclerose Lateral Amiotrófica/metabolismo , Animais , Western Blotting , Sobrevivência Celular/genética , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Agonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ácido Glutâmico/fisiologia , Humanos , Imuno-Histoquímica , Ácido Caínico/farmacologia , Camundongos , Camundongos Transgênicos , Antagonistas dos Receptores de Neurocinina-1 , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Receptores de AMPA/biossíntese , Receptores da Neurocinina-1/biossíntese , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
8.
J Cell Sci ; 122(Pt 22): 4195-207, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19861493

RESUMO

Thymosin beta4 (Tbeta4) is an actin-binding peptide whose expression in developing brain correlates with migration and neurite extension of neurons. Here, we studied the effects of the downregulation of Tbeta4 expression on growth and differentiation of murine neural progenitor cells (NPCs), using an antisense lentiviral vector. In differentiation-promoting medium, we found twice the number of neurons derived from the Tbeta4-antisense-transduced NPCs, which showed enhanced neurite outgrowth accompanied by increased expression of the adhesion complex N-cadherin-beta-catenin and increased ERK activation. Importantly, when the Tbeta4-antisense-transduced NPCs were transplanted in vivo into a mouse model of spinal cord injury, they promoted a significantly greater functional recovery. Locomotory recovery correlated with increased expression of the regeneration-promoting cell adhesion molecule L1 by the grafted Tbeta4-antisense-transduced NPCs. This resulted in an increased number of regenerating axons and in sprouting of serotonergic fibers surrounding and contacting the Tbeta4-antisense-transduced NPCs grafted into the lesion site. In conclusion, our data identify a new role for Tbeta4 in neuronal differentiation of NPCs by regulating fate determination and process outgrowth. Moreover, NPCs with reduced Tbeta4 levels generate an L1-enriched environment in the lesioned spinal cord that favors growth and sprouting of spared host axons and enhances the endogenous tissue-repair processes.


Assuntos
Regeneração Nervosa/fisiologia , Neurogênese , Neurônios/fisiologia , Timosina/metabolismo , Animais , Axônios/fisiologia , Caderinas/metabolismo , Comunicação Celular , DNA Antissenso , Modelos Animais de Doenças , Regulação para Baixo , Camundongos , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neurônios/citologia , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/fisiologia , Telencéfalo/citologia , Timosina/genética , beta Catenina/metabolismo
9.
Biochim Biophys Acta Mol Basis Dis ; 1867(6): 166122, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33713790

RESUMO

Frontotemporal Lobar Degeneration (FTD) is a neurodegenerative disease characterized by a progressive deterioration of cognitive functions. Currently, no effective treatment exists. We have studied cytotoxicity and neuronal functionality in cortical and spinal cord cultures upon exposure to cerebrospinal fluid (CSF) from 39 FTD patients. FTD-CSF alters the miniature excitatory postsynaptic currents in the cortical cultures and it is toxic to spinal cord cultures, particularly to GABAergic+ and calbindin-D28k + neurons.


Assuntos
Biomarcadores/líquido cefalorraquidiano , Líquido Cefalorraquidiano , Demência Frontotemporal/patologia , Neurônios/patologia , Idoso , Estudos de Casos e Controles , Feminino , Demência Frontotemporal/líquido cefalorraquidiano , Humanos , Masculino , Pessoa de Meia-Idade
10.
J Neurochem ; 113(3): 591-600, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20050974

RESUMO

MicroRNAs have been associated to fine-tuning spatial and temporal control of gene expression during neuronal development. The neuronal Cl(-) extruding, K(+)Cl(-) co-transporter 2 (KCC2) is known to play an important role in neuronal Cl(-) homeostasis and in determining the physiological response to activation of anion selective GABA receptors. Here we show that microRNA-92 is developmentally down-regulated during maturation of rat cerebellar granule neurons (CGNs) in vitro. Computational predictions suggest several high-ranking targets for microRNA-92 including the KCC2 gene. Consistently, the KCC2 protein levels were up-regulated in mature CGN in vitro and a functional association between microRNA-92 and KCC2 3' untranslated region was established using luciferase assays. The generation of an inward directed Cl(-) electrochemical gradient, necessary for the hyperpolarizing effect of GABA, requires robust KCC2 expression in several neuronal types. Here we show that lentiviral-mediated microRNA-92 over-expression reduced KCC2 protein levels and positively shifted reversal potential of GABA induced Cl(-) currents in CGNs. In addition KCC2 re-expression reversed microRNA-92 electrophysiological phenotype. Consistently microRNA-92 inhibition induced both an increase of the level of KCC2 and a negative shift in GABA reversal potential. These findings introduce a new player in the developmental change of GABA from depolarization to hyperpolarization.


Assuntos
Cerebelo/metabolismo , MicroRNAs/farmacologia , Neurônios/metabolismo , Simportadores/biossíntese , Regiões 3' não Traduzidas/genética , Animais , Northern Blotting , Western Blotting , Células Cultivadas , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Grânulos Citoplasmáticos/metabolismo , Eletrofisiologia , Regulação da Expressão Gênica/fisiologia , Genes Reporter/genética , Vetores Genéticos , Lentivirus/genética , Luciferases/genética , MicroRNAs/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Simportadores/antagonistas & inibidores , Ácido gama-Aminobutírico/fisiologia , Cotransportadores de K e Cl-
11.
Synapse ; 64(2): 161-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19852070

RESUMO

In this study, we have investigated the neuroprotective actions of the membrane impermeable, lidocaine analog, N-ethyl lidocaine (QX-314) in the striatum. The effects of this drug were compared with those caused by the strictly-related-compound and sodium channel blocker lidocaine. To address this issue, electrophysiological recordings were performed in striatal slices, in control condition (normoxia) and during combined oxygen and glucose deprivation (in vitro ischemia). Either QX-314 or lidocaine induced, to some extent, a protection of the permanent electrophysiological alteration (field potential loss) caused by a period (12 min) of ischemia. Thus, both compounds permitted a partial recovery of the ischemic depression of the corticostriatal transmission and reduced the amplitude of the ischemic depolarization in medium spiny neurons. However, while QX-314, at the effective concentration of 100 microM, slightly reduced the amplitude of the excitatory field potential and did not affect the current-evoked spikes discharge of medium spiny striatal neurons, equimolar lidocaine depressed the field potential and eliminated repetitive spikes on a depolarizing step. On the basis of these observations, our results suggest the use of QX-314 as a neuroprotective agent in ischemic brain disorders.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Lidocaína/análogos & derivados , Neostriado/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Isquemia Encefálica/fisiopatologia , Hipóxia Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Relação Dose-Resposta a Droga , Glucose/deficiência , Técnicas In Vitro , Lidocaína/administração & dosagem , Lidocaína/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Microeletrodos , Neostriado/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios/fisiologia , Fármacos Neuroprotetores/administração & dosagem , Ratos , Ratos Wistar , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/administração & dosagem , Bloqueadores dos Canais de Sódio/farmacologia
12.
Biomolecules ; 10(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024191

RESUMO

In the last decade, Nerve Growth Factor (NGF)-based clinical approaches have lacked specific and efficient Tyrosine Kinase A (TrkA) agonists for brain delivery. Nowadays, the characterization of novel small peptidomimetic is taking centre stage in preclinical studies, in order to overcome the main size-related limitation in brain delivery of NGF holoprotein for Central Nervous System (CNS) pathologies. Here we investigated the NGF mimetic properties of the human NGF 1-14 sequence (hNGF1-14) and its derivatives, by resorting to primary cholinergic and dorsal root ganglia (DRG) neurons. Briefly, we observed that: 1) hNGF1-14 peptides engage the NGF pathway through TrkA phosphorylation at tyrosine 490 (Y490), and activation of ShcC/PI3K and Plc-γ/MAPK signalling, promoting AKT-dependent survival and CREB-driven neuronal activity, as seen by levels of the immediate early gene c-Fos, of the cholinergic marker Choline Acetyltransferase (ChAT), and of Brain Derived Neurotrophic Factor (BDNF); 2) their NGF mimetic activity is lost upon selective TrkA inhibition by means of GW441756; 3) hNGF1-14 peptides are able to sustain DRG survival and differentiation in absence of NGF. Furthermore, the acetylated derivative Ac-hNGF1-14 demonstrated an optimal NGF mimetic activity in both neuronal paradigms and an electrophysiological profile similar to NGF in cholinergic neurons. Cumulatively, the findings here reported pinpoint the hNGF1-14 peptide, and in particular its acetylated derivative, as novel, specific and low molecular weight TrkA specific agonists in both CNS and PNS primary neurons.


Assuntos
Neurônios Colinérgicos/metabolismo , Gânglios Espinais/metabolismo , Fator de Crescimento Neural/química , Receptor trkA/agonistas , Receptor trkA/metabolismo , Proteína 3 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Animais , Bioensaio , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Peptídeos/química , Fosforilação , Ratos , Transdução de Sinais , Tirosina/química
13.
Cell Mol Neurobiol ; 29(5): 635-41, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19214738

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease defined by motor neuron loss. Transgenic mouse model (Tg SOD1G93A) shows pathological features that closely mimic those seen in ALS patients. An hypothetic link between AD and ALS was suggested by finding an higher amount of amyloid precursor protein (APP) in the spinal cord anterior horn neurons, and of Abeta peptides in ALS patients skin. In this work, we have investigated the expression of some genes involved in Alzheimer's disease, as APP, beta- and gamma-secretase, in an animal model of ALS, to understand some possible common molecular mechanisms between these two pathologies. For gene expression analysis, we carried out a quantitative RT-PCR in ALS mice and in transgenic mice over-expressing human wild-type SOD1 (Tg hSOD1). We found that APP and BACE1 mRNA levels were increased 1.5-fold in cortical cells of Tg SOD1G93A mice respect to Tg hSOD1, whereas the expression of gamma-secretase genes, as PSEN1, PSEN2, Nicastrin, and APH1a, showed no statistical differences between wild-type and ALS mice. Biochemical analysis carried out by immunostaining and western blotting, did not show any significant modulation of the protein expression compared to the genes, suggesting the existence of post-translational mechanisms that modify protein levels.


Assuntos
Substituição de Aminoácidos/genética , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , Perfilação da Expressão Gênica , Superóxido Dismutase/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
Eur J Neurosci ; 28(7): 1275-85, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18973555

RESUMO

Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the selective degeneration of motor neurons in the spinal cord, brainstem and cerebral cortex. In this study we have analysed the electrophysiological properties of GABA(A) receptors and GABA(A) alpha1 and alpha2 subunits expression in spinal motor neurons in culture obtained from a genetic model of ALS (G93A) and compared with transgenic wild type SOD1 (SOD1) and their corresponding non transgenic litter mates (Control). Although excitotoxic motor neuron death has been extensively studied in relation to Ca(2+)-dependent processes, strong evidence indicates that excitotoxic cell death is also remarkably dependent on Cl(-) ions and on GABA(A) receptor activation. In this study we have analysed the electrophysiological properties of GABA(A) receptors and the expression of GABA(A)alpha(1) and alpha(2) subunits in cultured motor neurons obtained from a genetic model of amyotrophic lateral sclerosis (G93A) and compared them with transgenic wild-type Cu,Zn superoxide dismutase and their corresponding non-transgenic littermates (Control). In all tested motor neurons, the application of gamma-aminobutyric acid (GABA) (0.5-100 mum) evoked an inward current that was reversibly blocked by bicuculline (100 mum), thus indicating that it was mediated by the activation of GABA(A) receptors. Our results indicate that the current density at high GABA concentrations is similar in control, Cu,Zn superoxide dismutase and G93A motor neurons. However, the dose-response curve significantly shifted toward lower concentration values in G93A motor neurons and the extent of desensitization also increased in these neurons. Finally, multiplex single-cell real-time polymerase chain reaction and immunofluorescence revealed that the amount of GABA(A)alpha(1) subunit was significantly increased in G93A motor neurons, whereas the levels of alpha(2) subunit were unchanged. These data show that the functionality and expression of GABA(A) receptors are altered in G93A motor neurons inducing a higher Cl(-) influx into the cell with a possible consequent neuronal excitotoxicity acceleration.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Medula Espinal/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Morte Celular/genética , Células Cultivadas , Canais de Cloreto/efeitos dos fármacos , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Antagonistas GABAérgicos/farmacologia , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Inibição Neural/genética , Neurotoxinas/farmacologia , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de GABA-A/química , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Transmissão Sináptica/genética , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
15.
Front Cell Neurosci ; 12: 487, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618634

RESUMO

Basal forebrain cholinergic neurons (BFCNs) depend on nerve growth factor (NGF) for their survival/differentiation and innervate cortical and hippocampal regions involved in memory/learning processes. Cholinergic hypofunction and/or degeneration early occurs at prodromal stages of Alzheimer's disease (AD) neuropathology in correlation with synaptic damages, cognitive decline and behavioral disability. Alteration(s) in ubiquitin-proteasome system (UPS) is also a pivotal AD hallmark but whether it plays a causative, or only a secondary role, in early synaptic failure associated with disease onset remains unclear. We previously reported that impairment of NGF/TrkA signaling pathway in cholinergic-enriched septo-hippocampal primary neurons triggers "dying-back" degenerative processes which occur prior to cell death in concomitance with loss of specific vesicle trafficking proteins, including synapsin I, SNAP-25 and α-synuclein, and with deficit in presynaptic excitatory neurotransmission. Here, we show that in this in vitro neuronal model: (i) UPS stimulation early occurs following neurotrophin starvation (-1 h up to -6 h); (ii) NGF controls the steady-state levels of these three presynaptic proteins by acting on coordinate mechanism(s) of dynamic ubiquitin-C-terminal hydrolase 1 (UCHL-1)-dependent (mono)ubiquitin turnover and UPS-mediated protein degradation. Importantly, changes in miniature excitatory post-synaptic currents (mEPSCs) frequency detected in -6 h NGF-deprived primary neurons are strongly reverted by acute inhibition of UPS and UCHL-1, indicating that NGF tightly controls in vitro the presynaptic efficacy via ubiquitination-mediated pathway(s). Finally, changes in synaptic ubiquitin and selective reduction of presynaptic markers are also found in vivo in cholinergic nerve terminals from hippocampi of transgenic Tg2576 AD mice, even from presymptomatic stages of neuropathology (1-month-old). By demonstrating a crucial role of UPS in the dysregulation of NGF/TrkA signaling on properties of cholinergic synapses, these findings from two well-established cellular and animal AD models provide novel therapeutic targets to contrast early cognitive and synaptic dysfunction associated to selective degeneration of BFCNs occurring in incipient early/middle-stage of disease.

16.
Mol Neurobiol ; 55(4): 3301-3315, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28488209

RESUMO

MicroRNAs are a class of non-coding RNAs with a growing relevance in the regulation of gene expression related to brain function and plasticity. They have the potential to orchestrate complex phenomena, such as the neuronal response to homeostatic challenges. We previously demonstrated the involvement of miR-135a in the regulation of early stress response. In the present study, we examine the role of miR-135a in stress-related behavior. We show that the knockdown (KD) of miR-135a in the mouse amygdala induces an increase in anxiety-like behavior. Consistently with behavioral studies, electrophysiological experiments in acute brain slices indicate an increase of amygdala spontaneous excitatory postsynaptic currents, as a result of miR-135a KD. Furthermore, we presented direct evidences, by in vitro assays and in vivo miRNA overexpression in the amygdala, that two key regulators of synaptic vesicle fusion, complexin-1 and complexin-2, are direct targets of miR-135a. In vitro analysis of miniature excitatory postsynaptic currents on miR-135a KD primary neurons indicates unpaired quantal excitatory neurotransmission. Finally, increased levels of complexin-1 and complexin-2 proteins were detected in the mouse amygdala after acute stress, accordingly to the previously observed stress-induced miR-135a downregulation. Overall, our results unravel a previously unknown miRNA-dependent mechanism in the amygdala for regulating anxiety-like behavior, providing evidences of a physiological role of miR-135a in the modulation of presynaptic mechanisms of glutamatergic neurotransmission.


Assuntos
Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiopatologia , Ansiedade/genética , Ansiedade/fisiopatologia , Comportamento Animal , MicroRNAs/metabolismo , Transmissão Sináptica/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Tonsila do Cerebelo/patologia , Animais , Linhagem Celular Tumoral , Potenciais Pós-Sinápticos Excitadores , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Hipocampo/patologia , Humanos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/genética
17.
Front Cell Neurosci ; 11: 68, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28360840

RESUMO

Alterations in NGF/TrkA signaling have been suggested to underlie the selective degeneration of the cholinergic basal forebrain neurons occurring in vivo in AD (Counts and Mufson, 2005; Mufson et al., 2008; Niewiadomska et al., 2011) and significant reduction of cognitive decline along with an improvement of cholinergic hypofunction have been found in phase I clinical trial in humans affected from mild AD following therapeutic NGF gene therapy (Tuszynski et al., 2005, 2015). Here, we show that the chronic (10-12 D.I.V.) in vitro treatment with NGF (100 ng/ml) under conditions of low supplementation (0.2%) with the culturing serum-substitute B27 selectively enriches the basal forebrain cholinergic neurons (+36.36%) at the expense of other non-cholinergic, mainly GABAergic (-38.45%) and glutamatergic (-56.25%), populations. By taking advantage of this newly-developed septo-hippocampal neuronal cultures, our biochemical and electrophysiological investigations demonstrate that the early failure in excitatory neurotransmission following NGF withdrawal is paralleled by concomitant and progressive loss in selected presynaptic and vesicles trafficking proteins including synapsin I, SNAP-25 and α-synuclein. This rapid presynaptic dysfunction: (i) precedes the commitment to cell death and is reversible in a time-dependent manner, being suppressed by de novo external administration of NGF within 6 hr from its initial withdrawal; (ii) is specific because it is not accompanied by contextual changes in expression levels of non-synaptic proteins from other subcellular compartments; (ii) is not secondary to axonal degeneration because it is insensible to pharmacological treatment with known microtubule-stabilizing drug such paclitaxel; (iv) involves TrkA-dependent mechanisms because the effects of NGF reapplication are blocked by acute exposure to specific and cell-permeable inhibitor of its high-affinity receptor. Taken together, this study may have important clinical implications in the field of AD neurodegeneration because it: (i) provides new insights on the earliest molecular mechanisms underlying the loss of synaptic/trafficking proteins and, then, of synapes integrity which occurs in vulnerable basal forebrain population at preclinical stages of neuropathology; (ii) offers prime presynaptic-based molecular target to extend the therapeutic time-window of NGF action in the strategy of improving its neuroprotective in vivo intervention in affected patients.

18.
Neuropharmacology ; 116: 82-97, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27989680

RESUMO

The accumulation of ß-amyloid (Aß) is one of the hallmarks of Alzheimer disease (AD). Beyond the inflammatory reactions promoted by Aß, it has been demonstrated that the prokineticin (PK) system, composed of the chemokine prokineticin 2 (PK2) and its receptors, is involved in Aß toxicity. In this study we have analyzed how the Aß chronic treatment affects the glutamatergic transmission on neurons from primary cortical cultures, clearly demonstrating the PK system involvement on its action mechanism. In fact, we have observed a significant increase of the ionic current through the AMPA receptors in primary cortical neurons and an up-regulation of the PK system in cultures chronically treated with Aß. All effects were nullified by the prokineticin antagonist PC-1. Moreover, we have herein firstly demonstrated that the incubation of primary cortical culture with Bv8, the amphibian homologue of PK2, was able to increase in neurons the AMPA currents at specific doses and exposure times, measured both as evoked and as spontaneous currents. This effect was not due to a modification of the AMPA receptor subunit expression. In contrast, the up-modulation of AMPA currents were blocked by PC-1 and were mediated by the activation of the intracellular protein kinase C (PKC) transduction pathways because Gö6983, the PKC inhibitor added in the medium, nullified the effect. Finally, cellular death induced by kainate was also reduced following treatment with PC1. In conclusion, our results show that the prokineticin system may be a key mediator in the Aß-induced neuronal damage, suggesting PK antagonists as new therapeutic compounds to ameliorate the AD progression.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteínas de Anfíbios/uso terapêutico , Peptídeos beta-Amiloides/toxicidade , Ácido Glutâmico/metabolismo , Neuropeptídeos/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/patologia , Animais , Anuros , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Hormônios Gastrointestinais/metabolismo , Indóis/farmacologia , Maleimidas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Neuropeptídeos/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ratos Wistar , Receptores de AMPA/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
19.
Sci Rep ; 6: 21205, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26875790

RESUMO

Although aversive memory has been mainly addressed by analysing the changes occurring in average populations, the study of neuronal mechanisms of outliers allows understanding the involvement of individual differences in fear conditioning and extinction. We recently developed an innovative experimental model of individual differences in approach and avoidance behaviors, classifying the mice as Approaching, Balancing or Avoiding animals according to their responses to conflicting stimuli. The approach and avoidance behaviors appear to be the primary reactions to rewarding and threatening stimuli and may represent predictors of vulnerability (or resilience) to fear. We submitted the three mice phenotypes to Contextual Fear Conditioning. In comparison to Balancing animals, Approaching and Avoiding mice exhibited no middle- or long-term fear extinction. The two non-extinguishing phenotypes exhibited potentiated glutamatergic neurotransmission (spontaneous excitatory postsynaptic currents/spinogenesis) of pyramidal neurons of medial prefrontal cortex and basolateral amygdala. Basing on the a priori individuation of outliers, we demonstrated that the maintenance of aversive memories is linked to increased spinogenesis and excitatory signaling in the amygdala-prefrontal cortex fear matrix.


Assuntos
Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Memória/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Condicionamento Clássico , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Fenótipo , Transmissão Sináptica/fisiologia
20.
Sci Rep ; 5: 15301, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26477583

RESUMO

Bv8/Prokineticin 2 (PROK2) is a bioactive peptide initially discovered as a regulator of gastrointestinal motility. Among multiple biological roles demonstrated for PROK2, it was recently established that PROK2 is an insult-inducible endangering mediator for cerebral damage. Aim of the present study was to evaluate the PROK2 and its receptors' potential involvement in amyloid beta (Aß) neurotoxicity, a hallmark of Alzheimer's disease (AD) and various forms of traumatic brain injury (TBI). Analyzing primary cortical cultures (CNs) and cortex and hippocampus from Aß treated rats, we found that PROK2 and its receptors PKR1 and PKR2 mRNA are up-regulated by Aß, suggesting their potential involvement in AD. Hence we evaluated if impairing the prokineticin system activation might have protective effect against neuronal death induced by Aß. We found that a PKR antagonist concentration-dependently protects CNs against Aß(1-42)-induced neurotoxicity, by reducing the Aß-induced PROK2 neuronal up-regulation. Moreover, the antagonist completely rescued LTP impairment in hippocampal slices from 6 month-old Tg2576 AD mice without affecting basal synaptic transmission and paired pulse-facilitation paradigms. These results indicate that PROK2 plays a role in cerebral amyloidosis and that PROK2 antagonists may represent a new approach for ameliorating the defining pathology of AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Hormônios Gastrointestinais/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Apoptose/efeitos dos fármacos , Hormônios Gastrointestinais/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neuropeptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Transporte Proteico , Ratos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA