Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 36(9): 3483-3497, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38819305

RESUMO

Potassium (K+) plays crucial roles in both plant development and immunity. However, the function of K+ in plant-virus interactions remains largely unknown. Here, we utilized Barley yellow striate mosaic virus (BYSMV), an insect-transmitted plant cytorhabdovirus, to investigate the interplay between viral infection and plant K+ homeostasis. The BYSMV accessory P9 protein exhibits viroporin activity by enhancing membrane permeability in Escherichia coli. Additionally, P9 increases K+ uptake in yeast (Saccharomyces cerevisiae) cells, which is disrupted by a point mutation of glycine 14 to threonine (P9G14T). Furthermore, BYSMV P9 forms oligomers and targets to both the viral envelope and the plant membrane. Based on the recombinant BYSMV-GFP (BYGFP) virus, a P9-deleted mutant (BYGFPΔP9) was rescued and demonstrated infectivity within individual plant cells of Nicotiana benthamiana and insect vectors. However, BYGFPΔP9 failed to infect barley plants after transmission by insect vectors. Furthermore, infection of barley plants was severely impaired for BYGFP-P9G14T lacking P9 K+ channel activity. In vitro assays demonstrate that K+ facilitates virion disassembly and the release of genome RNA for viral mRNA transcription. Altogether, our results show that the K+ channel activity of viroporins is conserved in plant cytorhabdoviruses and plays crucial roles in insect-mediated virus transmission.


Assuntos
Hordeum , Nicotiana , Doenças das Plantas , Rhabdoviridae , Hordeum/virologia , Hordeum/genética , Doenças das Plantas/virologia , Rhabdoviridae/fisiologia , Rhabdoviridae/genética , Animais , Nicotiana/virologia , Nicotiana/genética , Potássio/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Insetos Vetores/virologia , Vírus de Plantas/fisiologia , Vírus de Plantas/patogenicidade , Vírus de Plantas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia
2.
Plant J ; 116(6): 1717-1736, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37751381

RESUMO

Wheat yellow mosaic virus (WYMV) causes severe wheat viral disease in Asia. However, the viral suppressor of RNA silencing (VSR) encoded by WYMV has not been identified. Here, the P1 protein encoded by WYMV RNA2 was shown to suppress RNA silencing in Nicotiana benthamiana. Mutagenesis assays revealed that the alanine substitution mutant G175A of P1 abolished VSR activity and mutant Y10A VSR activity remained only in younger leaves. P1, but not G175A, interacted with gene silencing-related protein, N. benthamiana calmodulin-like protein (NbCaM), and calmodulin-binding transcription activator 3 (NbCAMTA3), and Y10A interacted with NbCAMTA3 only. Competitive Bimolecular fluorescence complementation and co-immunoprecipitation assays showed that the ability of P1 disturbing the interaction between NbCaM and NbCAMTA3 was stronger than Y10A, Y10A was stronger than G175A. In vitro transcript inoculation of infectious WYMV clones further demonstrated that VSR-defective mutants G175A and Y10A reduced WYMV infection in wheat (Triticum aestivum L.), G175A had a more significant effect on virus accumulation in upper leaves of wheat than Y10A. Moreover, RNA silencing, temperature, and autophagy have significant effects on the accumulation of P1 in N. benthamiana. Taken together, WYMV P1 acts as VSR by interfering with calmodulin-associated antiviral RNAi defense to facilitate virus infection in wheat, which has provided clear insights into the function of P1 in the process of WYMV infection.


Assuntos
Vírus do Mosaico , Viroses , Interferência de RNA , Triticum/genética , Calmodulina/genética , Viroses/genética , Vírus do Mosaico/genética , Doenças das Plantas/genética
3.
Plant Cell Environ ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016637

RESUMO

Wheat yellow mosaic virus (WYMV) causes severe viral wheat disease in Asia. The WYMV P1 protein encoded by RNA2 has viral suppressor of RNA silencing (VSR) activity to facilitate virus infection, however, VSR activity has not been identified for P2 protein encoded by RNA2. In this study, P2 protein exhibited strong VSR activity in Nicotiana benthamiana at the four-leaf stage, and point mutants P70A and G230A lost VSR activity. Protein P2 interacted with calmodulin (CaM) protein, a gene-silencing associated protein, while point mutants P70A and G230A did not interact with it. Competitive bimolecular fluorescence complementation and competitive co-immunoprecipitation experiments showed that P2 interfered with the interaction between CaM and calmodulin-binding transcription activator 3 (CAMTA3), but the point mutants P70A and G230A could not. Mechanical inoculation of wheat with in vitro transcripts of WYMV infectious cDNA clone further confirmed that VSR-deficient mutants P70A and G230A decreased WYMV infection in wheat plants compared with the wild type. In addition, RNA silencing, temperature, ubiquitination and autophagy had significant effects on accumulation of P2 protein in N. benthamiana leaves. In conclusion, WYMV P2 plays a VSR role in N. benthamiana and promotes virus infection by interfering with calmodulin-related antiviral RNAi defense.

4.
BMC Med Imaging ; 24(1): 244, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39285364

RESUMO

PURPOSE: To investigate the application value of support vector machine (SVM) model based on diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) and amide proton transfer- weighted (APTW) imaging in predicting isocitrate dehydrogenase 1(IDH-1) mutation and Ki-67 expression in glioma. METHODS: The DWI, DCE and APTW images of 309 patients with glioma confirmed by pathology were retrospectively analyzed and divided into the IDH-1 group (IDH-1(+) group and IDH-1(-) group) and Ki-67 group (low expression group (Ki-67 ≤ 10%) and high expression group (Ki-67 > 10%)). All cases were divided into the training set, and validation set according to the ratio of 7:3. The training set was used to select features and establish machine learning models. The SVM model was established with the data after feature selection. Four single sequence models and one combined model were established in IDH-1 group and Ki-67 group. The receiver operator characteristic (ROC) curve was used to evaluate the diagnostic performance of the model. Validation set data was used for further validation. RESULTS: Both in the IDH-1 group and Ki-67 group, the combined model had better predictive efficiency than single sequence model, although the single sequence model had a better predictive efficiency. In the Ki-67 group, the combined model was built from six selected radiomics features, and the AUC were 0.965 and 0.931 in the training and validation sets, respectively. In the IDH-1 group, the combined model was built from four selected radiomics features, and the AUC were 0.997 and 0.967 in the training and validation sets, respectively. CONCLUSION: The radiomics model established by DWI, DCE and APTW images could be used to detect IDH-1 mutation and Ki-67 expression in glioma patients before surgery. The prediction performance of the radiomics model based on the combination sequence was better than that of the single sequence model.


Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Antígeno Ki-67 , Mutação , Máquina de Vetores de Suporte , Humanos , Isocitrato Desidrogenase/genética , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/metabolismo , Antígeno Ki-67/metabolismo , Antígeno Ki-67/genética , Pessoa de Meia-Idade , Feminino , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Masculino , Estudos Retrospectivos , Adulto , Idoso , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Multimodal , Adulto Jovem , Imageamento por Ressonância Magnética/métodos , Curva ROC , Meios de Contraste
5.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34583990

RESUMO

Although there is a large gap between Black and White American life expectancies, the gap fell 48.9% between 1990 and 2018, mainly due to mortality declines among Black Americans. We examine age-specific mortality trends and racial gaps in life expectancy in high- and low-income US areas and with reference to six European countries. Inequalities in life expectancy are starker in the United States than in Europe. In 1990, White Americans and Europeans in high-income areas had similar overall life expectancy, while life expectancy for White Americans in low-income areas was lower. However, since then, even high-income White Americans have lost ground relative to Europeans. Meanwhile, the gap in life expectancy between Black Americans and Europeans decreased by 8.3%. Black American life expectancy increased more than White American life expectancy in all US areas, but improvements in lower-income areas had the greatest impact on the racial life expectancy gap. The causes that contributed the most to Black Americans' mortality reductions included cancer, homicide, HIV, and causes originating in the fetal or infant period. Life expectancy for both Black and White Americans plateaued or slightly declined after 2012, but this stalling was most evident among Black Americans even prior to the COVID-19 pandemic. If improvements had continued at the 1990 to 2012 rate, the racial gap in life expectancy would have closed by 2036. European life expectancy also stalled after 2014. Still, the comparison with Europe suggests that mortality rates of both Black and White Americans could fall much further across all ages and in both high-income and low-income areas.


Assuntos
População Negra/estatística & dados numéricos , Expectativa de Vida/etnologia , Mortalidade/etnologia , População Branca/estatística & dados numéricos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Europa (Continente) , Humanos , Lactente , Expectativa de Vida/tendências , Pessoa de Meia-Idade , Mortalidade/tendências , Estados Unidos , Adulto Jovem
6.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062817

RESUMO

Depression is one of the most common psychological disorders nowadays. Studies have shown that 20(S)-protopanaxatriol (PPT) can effectively improve depressive symptoms in mice. However, its mechanism needs to be further explored. In this study, we used an integrated approach combining network pharmacology and transcriptomics to explore the potential mechanisms of PPT for depression. First, the potential targets and pathways of PPT treatment of depression were screened through network pharmacology. Secondly, the BMKCloud platform was used to obtain brain tissue transcription data of chronic unpredictable mild stress (CUMS) model mice and screen PPT-altered differential expression genes (DEGs). Gene ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed using network pharmacology and transcriptomics. Finally, the above results were verified by molecular docking, Western blotting, and quantitative real-time polymerase chain reaction (qRT-PCR). In this study, we demonstrated that PPT improved depression-like behavior and brain histopathological changes in CUMS mice, downregulated nitric oxide (NO) and interleukin-6 (IL-6) levels, and elevated serum levels of 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) after PPT treatment compared to the CUMS group. Eighty-seven potential targets and 350 DEGs were identified by network pharmacology and transcriptomics. Comprehensive analysis showed that transthyretin (TTR), klotho (KL), FOS, and the phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) signaling pathway were closely associated with the therapeutic effects of PPT. Molecular docking results showed that PPT had a high affinity for PI3K, AKT, TTR, KL, and FOS targets. Gene and protein level results showed that PPT could increase the expression of PI3K, phosphorylation of PI3K (p-PI3K), AKT, phosphorylation of AKT (p-AKT), TTR, and KL and inhibit the expression level of FOS in the brain tissue of depressed mice. Our data suggest that PPT may achieve the treatment of depression by inhibiting the expression of FOS, enhancing the expression of TTR and KL, and modulating the PI3K-AKT signaling pathway.


Assuntos
Depressão , Farmacologia em Rede , Sapogeninas , Transcriptoma , Animais , Camundongos , Depressão/tratamento farmacológico , Depressão/metabolismo , Sapogeninas/farmacologia , Transcriptoma/efeitos dos fármacos , Masculino , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Simulação de Acoplamento Molecular , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Perfilação da Expressão Gênica , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos
7.
J Environ Manage ; 369: 122275, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39217908

RESUMO

The complex characteristics of volatility and non-linearity of carbon price pose a serious challenge to accurately predict carbon price. Therefore, this study proposes a new hybrid model for multivariate carbon price forecasting, including feature selection, deep learning, intelligent optimization algorithms, model combination and evaluation indicators. First, this study collects and organizes the historical carbon price series of Hubei and Shanghai as well as the influencing factors in five dimensions including structured and unstructured data, totaling twenty variables. Second, data dimensionality reduction is performed and input variables are obtained using the least absolute shrinkage and selection operator, followed by the introduction of nine advanced deep learning models to predict carbon price and compare the prediction effects. Then, through the combination of models, three models with the best performance are combined with Pelican optimization algorithm to construct a hybrid forecasting model. Finally, the experimental results show that the developed forecasting model outperforms other comparation models in terms of prediction accuracy, stability and statistical hypothesis testing, and exhibits excellent prediction performance. Furthermore, this study also applies the developed model to European carbon market price prediction and uses the Hubei carbon market as an example for quantitative trading simulation, and the empirical results further verify its robust prediction performance and investment application value. In conclusion, the proposed hybrid prediction model can not only provide high-precision carbon market price prediction for the government and corporate decision makers, but also help investors optimize their trading strategies and improve their returns.


Assuntos
Carbono , Previsões , Algoritmos , Modelos Teóricos , China , Comércio
8.
Molecules ; 29(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39274908

RESUMO

Extended exposure to UVB (280-315 nm) radiation results in oxidative damage and inflammation of the skin. Previous research has demonstrated that pilose antler extracts have strong anti-inflammatory properties and possess antioxidant effects. This study aimed to elucidate the mechanism of pilose antler protein in repairing photodamage caused by UVB radiation in HaCaT cells and ICR mice. Pilose antler protein (PAP) was found to increase the expression of type I collagen and hyaluronic acid in HaCaT cells under UVB irradiation while also inhibiting reactive oxygen species (ROS) production and oxidative stress in vitro. In vivo, the topical application of pilose antler protein effectively attenuated UVB-induced skin damage in ICR mice by reducing interleukin-1ß (IL-ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) and inhibiting skin inflammation while alleviating UVB-induced oxidative stress. It was shown that pilose antler protein repaired UVB-induced photodamage through the MAPK and TGF-ß/Smad pathways.


Assuntos
Chifres de Veado , Células HaCaT , Camundongos Endogâmicos ICR , Estresse Oxidativo , Espécies Reativas de Oxigênio , Pele , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Animais , Humanos , Chifres de Veado/química , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Pele/patologia , Pele/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Colágeno Tipo I/metabolismo , Cervos , Ácido Hialurônico/farmacologia , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo
9.
J Sci Food Agric ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189446

RESUMO

BACKGROUND: Deer oil (DO), a byproduct of deer meat processing, possesses high nutritional value. This study aims to evaluate the protective effects of DO on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice and to explore its potential mechanisms of action. RESULTS: DO was found to inhibit weight loss and colon shortening in colitis mice, significantly reduce disease activity index scores, and notably enhance the levels of tight junction proteins in colon tissues, thus improving intestinal barrier function. ELISA results indicated that DO markedly alleviated the mice's oxidative stress and inflammatory responses. Western blot analysis further demonstrated that DO significantly inhibited the phosphorylation of NF-κB while up-regulating the expression levels of Nrf2 and HO-1 proteins. Additionally, DO increased the abundance of beneficial bacteria such as Odoribacter, Blautia, and Muribaculum, reduced the abundance of harmful bacteria such as Bacteroides, Helicobacter, and Escherichia-Shigella, and promoted the production of short-chain fatty acids. CONCLUSION: Our study provides the first evidence that DO can effectively improve DSS-induced UC in mice. The underlying mechanisms may involve maintaining intestinal barrier function, inhibiting inflammation, alleviating oxidative stress, and modulation of gut microbiota. These findings offer valuable insights for developing DO as an adjunct treatment for UC and as a functional food. © 2024 Society of Chemical Industry.

10.
Korean J Physiol Pharmacol ; 28(4): 361-377, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38926843

RESUMO

The dried rattan stem of the Fibraurea Recisa Pierre plant contains the active ingredient known as fibrauretine (FN). Although it greatly affects Alzheimer's disease (AD), the mechanism of their effects still remains unclear. Proteomics and transcriptomics analysis methods were used in this study to determine the mechanism of FN in the treatment of AD. AD model is used through bilateral hippocampal injection of Aß1-40. After successful modeling, FN was given for 30 days. The results showed that FN could improve the cognitive dysfunction of AD model rats, reduce the expression of Aß and P-Tau, increase the content of acetylcholine and reduce the activity of acetylcholinesterase. The Kyoto Encyclopedia of Genes and Genomes enriched differentially expressed genes and proteins are involved in signaling pathways including metabolic pathway, AD, pathway in cancer, PI3K-AKT signaling pathway, and cAMP signaling pathway. Transcriptomics and proteomics sequencing resulted in 19 differentially expressed genes and proteins. Finally, in contrast to the model group, after FN treatment, the protein expressions and genes associated with the PI3K-AKT pathway were significantly improved in RT-qPCR and Western blot and assays. This is consistent with the findings of transcriptomic and proteomic analyses. Our study found that, FN may improve some symptoms of AD model rats through PI3K-AKT signaling pathway.

11.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2991-3001, 2024 Jun.
Artigo em Zh | MEDLINE | ID: mdl-39041159

RESUMO

Neuropathic pain(NP) is difficult to be treated since it has similar phenotypes but different pathogenesis in different pathological stages. Targeted intervention of the core regulatory elements at different pathological stages of NP has become a new direction of drug research and development in recent years and provides the possibility for the treatment of NP. The Mongolian medicine Naru-3(NR-3) is effective in the treatment of sciatica and trigeminal neuralgia, the mechanisms of which remain unknown. On the basis of the previous study of the priming stage, this study established the mouse model of spinal nerve ligation(SNL) and measured the changes of pain thresholds by behavioral tests. The network analysis, Western blot, immunofluorescence assay, ELISA, and agonist/antagonist were employed to decipher the mechanism of NR-3 in the treatment of NP in the maintenance stage. The results showed that NR-3 increased the mechanical and thermal pain thresholds of SNL mice, while it had no significant effect on the basal pain threshold of normal mice. NR-3 may relieve the pain in the maintenance stage of NP by blocking the matrix metalloproteinase 2(MMP2)/interleukin-1ß(IL-1ß) pathway in the astrocytes of the dorsal root ganglion(DRG) and spinal cord. The findings have enriched the biological connotation of NR-3 in the treatment of the maintenance stage of NP and provide reference for the rational use of this medicine in clinical practice.


Assuntos
Astrócitos , Medicina Tradicional da Mongólia , Neuralgia , Animais , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Camundongos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Doenças Neuroinflamatórias/tratamento farmacológico , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Modelos Animais de Doenças
12.
Angew Chem Int Ed Engl ; 63(23): e202403317, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38578721

RESUMO

We demonstrate directed translocation of ClO4 - anions from cationic to neutral binding site along the synthetized BPym-OH dye molecule that exhibits coupled excited-state intramolecular proton-transfer (ESIPT) and charge-transfer (CT) reaction (PCCT). The results of steady-state and time-resolved spectroscopy together with computer simulation and modeling show that in low polar toluene the excited-state redistribution of electronic charge enhanced by ESIPT generates the driving force, which is much stronger than by CT reaction itself and provides more informative gigantic shifts of fluorescence spectra signaling on ultrafast ion motion. The associated with ion translocation red-shifted fluorescence band (at 750 nm, extending to near-IR region) appears at the time ~83 ps as a result of electrochromic modulation of PCCT reaction. It occurs at substantial delay to PCCT that displayed fluorescence band at 640 nm and risetime of <200 fs. Thus, it becomes possible to visualize the manifestations of light-triggered ion translocation and of its driving force by fluorescence techniques and to separate them in time and energy domains.

13.
Chemistry ; 29(44): e202301073, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37212544

RESUMO

Phosphonium-based compounds gain attention as promising photofunctional materials. As a contribution to the emerging field, we present a series of donor-acceptor ionic dyes, which were constructed by tailoring phosphonium (A) and extended π-NR2 (D) fragments to an anthracene framework. The alteration of the π-spacer of electron-donating substituents in species with terminal -+ PPh2 Me groups exhibits a long absorption wavelength up to λabs =527 nm in dichloromethane and shifted the emission to the near-infrared (NIR) region (λ=805 nm for thienyl aniline donor), although at low quantum yield (Φ<0.01). In turn, the introduction of a P-heterocyclic acceptor substantially narrowed the optical bandgap and improved the efficiency of fluorescence. In particular, the phospha-spiro moiety allowed to attain NIR emission (797 nm in dichloromethane) with fluorescence efficiency as high as Φ=0.12. The electron-accepting property of the phospha-spiro constituent outperformed that of the monocyclic and terminal phosphonium counterparts, illustrating a promising direction in the design of novel charge-transfer chromophores.

14.
J Biochem Mol Toxicol ; 37(1): e23225, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36169195

RESUMO

Depression is one of the most common neuropsychiatric disorders that is characterized by low mood, lack of motivation, slow thinking, and recurrent suicidal thoughts. The mechanism of action of palmatine in depression has been rarely reported and remains unclear. The present study examined the neuroprotective effects of palmatine on lipopolysaccharide (LPS)-induced oxidative stress, apoptosis, and depression-like behavior. In this study, cell apoptosis was evaluated by CCK-8, flow cytometry, and Hoechst 33258 staining in LPS-induced HT-22 cells. Meanwhile, reactive oxygen species (ROS) and mitochondrial membrane potential were detected in vitro. In vivo, we investigated depressive-like behaviors in mice by an open field test (OFT) and elevated plus-maze test (EPM). Additionally, the levels of superoxide dismutases (SOD), TNF-α, IL-1ß, and IL-6 were detected by enzyme-linked immunosorbent assay. The hematoxylin-eosin staining and TUNEL staining were used to evaluate the pathology of the hippocampus. The expression of Nrf2/HO-1 and BAX/Bcl-2 pathways in the hippocampus were assessed by Western blot analysis. Palmatine could significantly reduce apoptosis and ROS levels, and improve mitochondrial damage. Moreover, palmatine significantly improves movement time and central square crossing time in OFT, and improves open arms and movement time in EMP. And the levels of SOD, TNF-α, IL-1ß, and IL-6 were significantly decreased after palmatine treatment. More importantly, palmatine improved neuronal apoptosis in the hippocampus, and depression through BAX/Bcl-2 and Nrf2/HO-1 signaling pathways. We provide evidence that palmatine further alleviates the depressive-like behavior of LPS-induced by improving apoptosis and oxidative stress.


Assuntos
Depressão , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Estresse Oxidativo , Apoptose , Superóxido Dismutase/metabolismo
15.
J Biochem Mol Toxicol ; 37(6): e23345, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37050869

RESUMO

The role of polysaccharide components in the immune system, especially immunomodulatory effects, has received increasing attention. In this context, in this study, network pharmacology was adopted to explore the hypothesis of a multitarget mechanism for immune modulation by Chrysalis polysaccharides. A total of 174 common targets were screened by network pharmacology, with the main ones being TNF, MAPK3, CASP3, VEGFA, and STAT3, mostly enriched in the Toll pathway. The molecular docking results showed that the polysaccharide fraction of Chrysalis binds well to TNF proteins. Besides, in vitro cellular assays were performed to verify the ability of Chrysalis polysaccharides to regulate macrophage polarization and to screen for macrophage surface receptors. Furthermore, in vivo experiments were conducted to prove the activation of TLR4 and TNF-α protein expression in mice by Chrysalis polysaccharide.


Assuntos
Cordyceps , Medicamentos de Ervas Chinesas , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Simulação de Acoplamento Molecular , Receptor 4 Toll-Like , Farmacologia em Rede , Polissacarídeos/farmacologia
16.
BMC Pregnancy Childbirth ; 23(1): 251, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055725

RESUMO

BACKGROUND: Since the coronavirus disease 2019 (COVID-19) pandemic outbreak, the incidence of mental health problems in perinatal women has been high, and particularly prominent in China which was the first country affected by COVID-19. This paper aims to investigate the current situation and the related factors of maternal coping difficulties after discharge during COVID-19. METHODS: General information questionnaires (the Perinatal Maternal Health Literacy Scale, Postpartum Social Support Scale and Post-Discharge Coping Difficulty Scale-New Mother Form) were used to investigate 226 puerperal women in the third week of puerperium. The influencing factors were analyzed by single factor analysis, correlation and multiple linear regression. RESULTS: The total score of coping difficulties after discharge was 48.92 ± 12.05. At the third week after delivery, the scores of health literacy and social support were 21.34 ± 5.18 and 47.96 ± 12.71. There were negative correlations among health literacy, social support and coping difficulties after discharge (r = -0.34, r = -0.38, P < 0.001). Primipara, family income, health literacy and social support were the main factors influencing maternal coping difficulties after discharge. CONCLUSION: During the COVID-19 pandemic, puerperal women in a low- and middle-income city had moderate coping difficulties after discharge and were affected by many factors. To meet the different needs of parturients and improve their psychological coping ability, medical staff should perform adequate assessment of social resources relevant to parturients and their families when they are discharged, so they can smoothly adapt to the role of mothers.


Assuntos
COVID-19 , Gravidez , Humanos , Feminino , COVID-19/epidemiologia , Pandemias , Alta do Paciente , Assistência ao Convalescente , Período Pós-Parto/psicologia , Adaptação Psicológica , Mães/psicologia
17.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958950

RESUMO

In recent years, the phenomenon of acute poisoning and organ damage caused by organophosphorus pesticides (OPs) has been a frequent occurrence. Chlorpyrifos (CPF) is one of the most widely used organophosphorus pesticides. The main active components of ginseng stems and leaves are total ginseng stem-and-leaf saponins (GSLSs), which have various biological effects, including anti-inflammatory, antioxidant and anti-tumor activities. We speculate that these could have great potential in the treatment of severe diseases and the relief of organophosphorus-pesticide-induced side effects; however, their mechanism of action is still unknown. At present, our work aims to evaluate the effects of GSLSs on the antioxidation of CPF in vivo and in vitro and their potential pharmacological mechanisms. Mice treated with CPF (5 mg/kg) showed severe intestinal mucosal injury, an elevated diamine oxidase (DAO) index, the decreased expression of occlusive protein-1 (ZO-1) and occlusive protein, an impaired intestinal mucosal oxidation system and intestinal villi relaxation. In addition, chlorpyrifos exposure significantly increased the contents of the inflammatory factor TNF-α and the oxidative-stress-related indicators superoxide dismutase (SOD), catalase (CAT), glutathione SH (GSH), glutathione peroxidase (GSH-PX), reactive oxygen species (ROS) and total antioxidant capacity (T-AOC); elevated the level of lipid peroxide malondialdehyde (MDA); reversed the expression of Bax and caspase; and activated NF-κB-related proteins. Interestingly, GSLS supplementation at doses of 100 and 200 mg/kg significantly reversed these changes after treatment. Similar results were observed in cultured RAW264.7 cells. Using flow cytometry, Hoechst staining showed that GSLSs (30 µg/mL, 60 µg/mL) could improve the cell injury and apoptosis caused by CPF and reduce the accumulation of ROS in cells. In conclusion, GSLSs play a protective role against CPF-induced enterotoxicity by inhibiting NF-κB-mediated apoptosis and alleviating oxidative stress and inflammation.


Assuntos
Clorpirifos , Panax , Praguicidas , Saponinas , Camundongos , Animais , Clorpirifos/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Panax/metabolismo , Saponinas/farmacologia , Compostos Organofosforados/farmacologia , Praguicidas/farmacologia , Estresse Oxidativo , Glutationa/metabolismo , Apoptose , Folhas de Planta/metabolismo
18.
Molecules ; 28(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067664

RESUMO

Neurological-related disorders are diseases that affect the body's neurons or peripheral nerve tissue, such as Parkinson's disease (PD) and Alzheimer's disease (AD). The development of neurological disorders can cause serious harm to the quality of life and functioning of the patient. The use of traditional therapeutic agents such as dopamine-promoting drugs, anticholinergic drugs, cholinesterase inhibitors, and NMDA receptor antagonists is often accompanied by a series of side effects such as drug resistance, cardiac arrhythmia, liver function abnormalities, and blurred vision. Therefore, there is an urgent need to find a therapeutic drug with a high safety profile and few side effects. Herbal medicines are rich in active ingredients that are natural macromolecules. Ginsenoside is the main active ingredient of ginseng, which has a variety of pharmacological effects and is considered to have potential value in the treatment of human diseases. Modern pharmacological studies have shown that ginsenosides Rg2 and Rh1 have strong pharmacological activities in the nervous system, with protective effects on nerve cells, improved resistance to neuronal injury, modulation of neural activity, resistance to cerebral ischemia/reperfusion injury, improvement of brain damage after eclampsia hemorrhage, improvement of memory and cognitive deficits, treatment of AD and vascular dementia, alleviation of anxiety, pain, and inhibition of ionic-like behavior. In this article, we searched the pharmacological research literature of Rg2 and Rh1 in the field of neurological diseases, summarized the latest research progress of the two ginsenosides, and reviewed the pharmacological effects and mechanisms of Rg2 and Rh1, which provided a new way of thinking for the research of the active ingredients in ginseng anti-neurological diseases and the development of new drugs.


Assuntos
Ginsenosídeos , Panax , Humanos , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Qualidade de Vida , Sistema Nervoso
19.
Molecules ; 29(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202727

RESUMO

Polysaccharides are the main effective components of Cynomorium songaricum's stem that perform biological activities and have positive impacts on immune enhancement. In this study, the polysaccharide CSP-III of Cynomorium songaricum's stem was isolated using a DEAE-52 cellulose column through Sephadex G-100 gel column chromatography. Upon analysis, the monosaccharide composition of CSP-III included Mannose (Man), Glucuronic acid (GlcA), Galacturonic acid (GalA), Rhamnose (Rha), Glucose (Glc), Galactose (Gal), and Arabinose (Ara), at a molar ratio of 0.01:0.11:0.03:0.57:0.02:0.32:1. The molecular weight of CSP-III was 4018234 Da. Meanwhile, the capacity of CSP-III, at various concentrations, to stimulate the proliferation of mouse spleen lymphocytes in vitro was compared, and the influence of CSP-III on cell proliferation was examined using RAW264.7 mouse mononuclear macrophages as a model. The influence of CSP-III on the expression of important phosphorylating proteins in the MAPK signaling pathway was initially analyzed by Western blotting. In RAW264.7 cells, CSP-III promoted the phosphorylation of JNK proteins, which thus activated the MAPK signaling cascade and exerted immunomodulatory effects. Moreover, according to in vivo studies using cyclophosphamide (CTX)-induced immunosuppression mouse models, CSP-III improved the CTX-induced histopathological damage, promoted T and B lymphocyte proliferation, upregulated CD4+ and CD8+ T-lymphocyte counts in the spleen, increased the serum levels of IgG and IgM, and activated three essential proteins of the MAPK signaling pathway. As revealed by analysis of intestinal flora, CSP-III improved the immune function by maintaining the homeostasis of the bacterial flora by boosting the relative abundances of some beneficial bacterial groups, such as Bacteroidetes, Desmodium, and Actinomyces, and reducing the relative abundance of Aspergillus phylum. Through in vitro and in vivo experiments, our present study demonstrates that polysaccharides from the stem of Cynomorium songaricum possess strong immunoregulatory effects. Findings in this work provide theoretical support for the potential application of Cynomorium songaricum in the field of health food.


Assuntos
Cynomorium , Humanos , Animais , Camundongos , Imunomodulação , Terapia de Imunossupressão , Ativação Linfocitária , Sistema de Sinalização das MAP Quinases
20.
Molecules ; 28(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37630334

RESUMO

In order to obtain homogeneous Sanghuangporus vaninii polysaccharides with antioxidant and anti-inflammatory activities, a response surface method (RSM) was used to compare the polysaccharide extraction rate of hot water extraction and ultrasonic-assisted extraction from Sanghuangporus vaninii. The optimal conditions for ultrasonic-assisted extraction were determined as follows: an extraction temperature of 60 °C, an extraction time of 60 min, a solid-liquid ratio of 40 g/mL, and an ultrasonic power of 70 W. An SVP (Sanghuangporus vaninii polysaccharides) extraction rate of 1.41% was achieved. Five homogeneous monosaccharides were obtained by gradient ethanol precipitation with diethylaminoethyl-cellulose (DEAE) and SephadexG-100 separation and purification. The five polysaccharides were characterized by high performance liquid chromatography, the ultraviolet spectrum, the Fourier transform infrared spectrum, TG (thermogravimetric analysis), the Zeta potential, and SEM (scanning electron microscopy). The five polysaccharides had certain levels of antioxidant activity in vitro. In addition, we the investigated the anti-inflammatory effects of polysaccharides derived from Sanghuangporus vaninii on lipopolysaccharide (LPS)-induced RAW 264.7 cells and Kupffer cells. Further, we found that SVP-60 significantly inhibited the levels of pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α in lipopolysaccharide (LPS)-induced RAW 264.7 cells and promoted the level of the anti-inflammatory cytokine IL-10 in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Our study provides theoretical support for the potential application of Sanghuangporus vaninii in the field of antioxidant and anti-inflammatory activities in vitro.


Assuntos
Antioxidantes , Lipopolissacarídeos , Antioxidantes/farmacologia , Polissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Citocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA