Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurosci ; 35(5): 2246-54, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25653379

RESUMO

Rapid nerve conduction in myelinated nerves requires the clustering of voltage-gated sodium channels at nodes of Ranvier. The Neurofascin (Nfasc) gene has a unique role in node formation because it encodes glial and neuronal isoforms of neurofascin (Nfasc155 and Nfasc186, respectively) with key functions in assembling the nodal macromolecular complex. A third neurofascin, Nfasc140, has also been described; however, neither the cellular origin nor function of this isoform was known. Here we show that Nfasc140 is a neuronal protein strongly expressed during mouse embryonic development. Expression of Nfasc140 persists but declines during the initial stages of node formation, in contrast to Nfasc155 and Nfasc186, which increase. Nevertheless, Nfasc140, like Nfasc186, can cluster voltage-gated sodium channels (Nav) at the developing node of Ranvier and can restore electrophysiological function independently of Nfasc155 and Nfasc186. This suggests that Nfasc140 complements the function of Nfasc155 and Nfasc186 in initial stages of the assembly and stabilization of the nodal complex. Further, Nfasc140 is reexpressed in demyelinated white matter lesions of postmortem brain tissue from human subjects with multiple sclerosis. This expands the critical role of the Nfasc gene in the function of myelinated axons and reveals further redundancy in the mechanisms required for the formation of this crucial structure in the vertebrate nervous system.


Assuntos
Moléculas de Adesão Celular/metabolismo , Fatores de Crescimento Neural/metabolismo , Nós Neurofibrosos/metabolismo , Rombencéfalo/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Axônios/metabolismo , Estudos de Casos e Controles , Moléculas de Adesão Celular/genética , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Fatores de Crescimento Neural/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Rombencéfalo/embriologia , Canais de Sódio Disparados por Voltagem/metabolismo
2.
J Neurosci ; 34(15): 5083-8, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24719087

RESUMO

Fast, saltatory conduction in myelinated nerves requires the clustering of voltage-gated sodium channels (Nav) at nodes of Ranvier in a nodal complex. The Neurofascin (Nfasc) gene encodes neuronal Neurofascin 186 (Nfasc186) at the node and glial Neurofascin 155 at the paranode, and these proteins play a key role in node assembly. However, their role in the maintenance and stability of the node is less well understood. Here we show that by inducible ablation of Nfasc in neurons in adult mice, Nfasc186 expression is reduced by >99% and 94% at PNS and CNS nodes, respectively. Gliomedin and NrCAM at PNS and brevican at CNS nodes are largely lost with neuronal neurofascin; however, Nav at nodes of Ranvier persist, albeit with ∼40% reduction in expression levels. ßIV Spectrin, ankyrin G, and, to a lesser extent, the ß1 subunit of the sodium channel, are less affected at the PNS node than in the CNS. Nevertheless, there is a 38% reduction in PNS conduction velocity. Loss of Nfasc186 provokes CNS paranodal disorganization, but this does not contribute to loss of Nav. These results show that Nav at PNS nodes are still maintained in a nodal complex when neuronal neurofascin is depleted, whereas the retention of nodal Nav in the CNS, despite more extensive dissolution of the complex, suggests a supportive role for the partially disrupted paranodal axoglial junction in selectively maintaining Nav at the CNS node.


Assuntos
Moléculas de Adesão Celular/genética , Deleção de Genes , Fatores de Crescimento Neural/genética , Nós Neurofibrosos/metabolismo , Medula Espinal/metabolismo , Animais , Brevicam/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Feminino , Masculino , Camundongos , Fatores de Crescimento Neural/metabolismo , Neuroglia/metabolismo , Transporte Proteico , Medula Espinal/citologia , Canais de Sódio Disparados por Voltagem/metabolismo
3.
J Neurosci ; 31(49): 18185-94, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22159130

RESUMO

Myelinated axons have a distinct protein architecture essential for action potential propagation, neuronal communication, and maintaining cognitive function. Damage to myelinated axons, associated with cerebral hypoperfusion, contributes to age-related cognitive decline. We sought to determine early alterations in the protein architecture of myelinated axons and potential mechanisms after hypoperfusion. Using a mouse model of hypoperfusion, we assessed changes in proteins critical to the maintenance of paranodes, nodes of Ranvier, axon-glial integrity, axons, and myelin by confocal laser scanning microscopy. As early as 3 d after hypoperfusion, the paranodal septate-like junctions were damaged. This was marked by a progressive reduction of paranodal Neurofascin signal and a loss of septate-like junctions. Concurrent with paranodal disruption, there was a significant increase in nodal length, identified by Nav1.6 staining, with hypoperfusion. Disruption of axon-glial integrity was also determined after hypoperfusion by changes in the spatial distribution of myelin-associated glycoprotein staining. These nodal/paranodal changes were more pronounced after 1 month of hypoperfusion. In contrast, the nodal anchoring proteins AnkyrinG and Neurofascin 186 were unchanged and there were no overt changes in axonal and myelin integrity with hypoperfusion. A microarray analysis of white matter samples indicated that there were significant alterations in 129 genes. Subsequent analysis indicated alterations in biological pathways, including inflammatory responses, cytokine-cytokine receptor interactions, blood vessel development, and cell proliferation processes. Our results demonstrate that hypoperfusion leads to a rapid disruption of key proteins critical to the stability of the axon-glial connection that is mediated by a diversity of molecular events.


Assuntos
Axônios/patologia , Regulação da Expressão Gênica/fisiologia , Hipóxia-Isquemia Encefálica/patologia , Neuroglia/patologia , Neurônios/patologia , Fatores Etários , Animais , Anquirinas/metabolismo , Moléculas de Adesão Celular , Moléculas de Adesão Celular Neuronais , Doença Crônica , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Modelos Animais de Doenças , Tomografia com Microscopia Eletrônica/métodos , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Proteína Básica da Mielina/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6 , Fibras Nervosas Mielinizadas/metabolismo , Fatores de Crescimento Neural , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neuroglia/metabolismo , Neurônios/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Nervo Óptico/ultraestrutura , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/patologia , Transdução de Sinais/fisiologia , Canais de Sódio
4.
iScience ; 23(5): 101078, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32361506

RESUMO

Early in brain development, impaired neuronal signaling during time-sensitive windows triggers the onset of neurodevelopmental disorders. GABA, through its depolarizing and excitatory actions, drives early developmental events including neuronal circuit formation and refinement. BDNF/TrkB signaling cooperates with GABA actions. How these developmental processes influence the formation of neural circuits and affect adult brain function is unknown. Here, we show that early deletion of Ntrk2/Trkb from immature mouse hippocampal dentate granule cells (DGCs) affects the integration and maturation of newly formed DGCs in the hippocampal circuitry and drives a premature shift from depolarizing to hyperpolarizing GABAergic actions in the target of DGCs, the CA3 principal cells of the hippocampus, by reducing the expression of the cation-chloride importer Nkcc1. These changes lead to the disruption of early synchronized neuronal activity at the network level and impaired morphological maturation of CA3 pyramidal neurons, ultimately contributing to altered adult hippocampal synaptic plasticity and cognitive processes.

5.
Neuron ; 48(5): 737-42, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16337912

RESUMO

Voltage-gated sodium channels are concentrated in myelinated nerves at the nodes of Ranvier flanked by paranodal axoglial junctions. Establishment of these essential nodal and paranodal domains is determined by myelin-forming glia, but the mechanisms are not clear. Here, we show that two isoforms of Neurofascin, Nfasc155 in glia and Nfasc186 in neurons, are required for the assembly of these specialized domains. In Neurofascin-null mice, neither paranodal adhesion junctions nor nodal complexes are formed. Transgenic expression of Nfasc155 in the myelinating glia of Nfasc-/- nerves rescues the axoglial adhesion complex by recruiting the axonal proteins Caspr and Contactin to the paranodes. However, in the absence of Nfasc186, sodium channels remain diffusely distributed along the axon. Our study shows that the two major Neurofascins play essential roles in assembling the nodal and paranodal domains of myelinated axons; therefore, they are essential for the transition to saltatory conduction in developing vertebrate nerves.


Assuntos
Axônios/fisiologia , Moléculas de Adesão Celular/fisiologia , Fatores de Crescimento Neural/fisiologia , Condução Nervosa/fisiologia , Canais de Sódio/fisiologia , Animais , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Espaço Extracelular , Junções Intercelulares/fisiologia , Camundongos , Camundongos Knockout/genética , Camundongos Transgênicos , Bainha de Mielina/metabolismo , Fibras Nervosas Mielinizadas/fisiologia , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/deficiência , Fatores de Crescimento Neural/genética , Neuroglia/metabolismo , Neuroglia/fisiologia , Fenótipo , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Estrutura Terciária de Proteína/fisiologia , Nós Neurofibrosos/fisiologia
6.
Front Synaptic Neurosci ; 5: 9, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24151466

RESUMO

Lipid rafts, cholesterol and lipid rich microdomains, are believed to play important roles as platforms for the partitioning of transmembrane and synaptic proteins involved in synaptic signaling, plasticity, and maintenance. There is increasing evidence of a physical interaction between post-synaptic densities and post-synaptic lipid rafts. Localization of proteins within lipid rafts is highly regulated, and therefore lipid rafts may function as traffic lights modulating and fine-tuning neuronal signaling. The tyrosine kinase neurotrophin receptors (Trk) and the low-affinity p75 neurotrophin receptor (p75(NTR)) are enriched in neuronal lipid rafts together with the intermediates of downstream signaling pathways, suggesting a possible role of rafts in neurotrophin signaling. Moreover, neurotrophins and their receptors are involved in the regulation of cholesterol metabolism. Cholesterol is an important component of lipid rafts and its depletion leads to gradual loss of synapses, underscoring the importance of lipid rafts for proper neuronal function. Here, we review and discuss the idea that translocation of neurotrophin receptors in synaptic rafts may account for the selectivity of their transduced signals.

7.
Neuron ; 69(5): 945-56, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21382554

RESUMO

The axon initial segment (AIS) is critical for the initiation and propagation of action potentials. Assembly of the AIS requires interactions between scaffolding molecules and voltage-gated sodium channels, but the molecular mechanisms that stabilize the AIS are poorly understood. The neuronal isoform of Neurofascin, Nfasc186, clusters voltage-gated sodium channels at nodes of Ranvier in myelinated nerves: here, we investigate its role in AIS assembly and stabilization. Inactivation of the Nfasc gene in cerebellar Purkinje cells of adult mice causes rapid loss of Nfasc186 from the AIS but not from nodes of Ranvier. This causes AIS disintegration, impairment of motor learning and the abolition of the spontaneous tonic discharge typical of Purkinje cells. Nevertheless, action potentials with a modified waveform can still be evoked and basic motor abilities remain intact. We propose that Nfasc186 optimizes communication between mature neurons by anchoring the key elements of the adult AIS complex.


Assuntos
Potenciais de Ação/fisiologia , Axônios/fisiologia , Moléculas de Adesão Celular/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurônios/fisiologia , Nós Neurofibrosos/fisiologia , Animais , Moléculas de Adesão Celular/genética , Eletrofisiologia , Camundongos , Camundongos Transgênicos , Fatores de Crescimento Neural/genética , Canais de Sódio/fisiologia
8.
J Cell Biol ; 181(7): 1169-77, 2008 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-18573915

RESUMO

Rapid nerve impulse conduction in myelinated axons requires the concentration of voltage-gated sodium channels at nodes of Ranvier. Myelin-forming oligodendrocytes in the central nervous system (CNS) induce the clustering of sodium channels into nodal complexes flanked by paranodal axoglial junctions. However, the molecular mechanisms for nodal complex assembly in the CNS are unknown. Two isoforms of Neurofascin, neuronal Nfasc186 and glial Nfasc155, are components of the nodal and paranodal complexes, respectively. Neurofascin-null mice have disrupted nodal and paranodal complexes. We show that transgenic Nfasc186 can rescue the nodal complex when expressed in Nfasc(-/-) mice in the absence of the Nfasc155-Caspr-Contactin adhesion complex. Reconstitution of the axoglial adhesion complex by expressing transgenic Nfasc155 in oligodendrocytes also rescues the nodal complex independently of Nfasc186. Furthermore, the Nfasc155 adhesion complex has an additional function in promoting the migration of myelinating processes along CNS axons. We propose that glial and neuronal Neurofascins have distinct functions in the assembly of the CNS node of Ranvier.


Assuntos
Moléculas de Adesão Celular/metabolismo , Sistema Nervoso Central/metabolismo , Fatores de Crescimento Neural/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Nós Neurofibrosos/metabolismo , Animais , Adesão Celular , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular Neuronais/metabolismo , Movimento Celular , Sistema Nervoso Central/citologia , Sistema Nervoso Central/ultraestrutura , Contactinas , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mutantes/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Fatores de Crescimento Neural/deficiência , Neuroglia/citologia , Neurônios/citologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Oligodendroglia/ultraestrutura , Fenótipo , Isoformas de Proteínas/metabolismo , Nós Neurofibrosos/ultraestrutura , Canais de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA