Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Chem Rev ; 117(5): 3883-3929, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28177233

RESUMO

A complete review of the literature data on the speed of sound and ultrasound absorption in pure ionic liquids (ILs) is presented. Apart of the analysis of data published to date, the significance of the speed of sound in ILs is regarded. An analysis of experimental methods described in the literature to determine the speed of sound in ILs as a function of temperature and pressure is reported, and the relevance of ultrasound absorption in acoustic investigations is discussed. Careful attention was paid to highlight possible artifacts, and side phenomena related to the absorption and relaxation present in such measurements. Then, an overview of existing data is depicted to describe the temperature and pressure dependences on the speed of sound in ILs, as well as the impact of impurities in ILs on this property. A relation between ions structure and speeds of sound is presented by highlighting existing correlation and evaluative methods described in the literature. Importantly, a critical analysis of speeds of sound in ILs vs those in classical molecular solvents is presented to compare these two classes of compounds. The last part presents the importance of acoustic investigations for chemical engineering design and possible industrial applications of ILs.

2.
J Chem Phys ; 146(13): 134505, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28390353

RESUMO

At 20, 25, 30, and 40 °C, the ultrasonic absorption spectra of the protic ionic liquid 3-(butoxymethyl)-1H-imidazol-3-ium salicylate have been measured between 0.6 and 900 MHz. Below 250 MHz, the absorption coefficient decreases with temperature, potentially indicating a major effect of the viscosity and/or a relaxation time. Essentially the broad spectra can be favorably represented by two relaxation terms in addition to an asymptotic high-frequency contribution. One term reflects an asymmetric relaxation time distribution. It is described by a model of noncritical fluctuations in the structure and thermodynamic parameters of the liquid in order to yield the fluctuation correlation length and the mutual diffusion coefficient. Applying the Stokes-Einstein-Kawasaki-Ferrell relation, these quantities can be used to show that the effective shear viscosity controlling the fluctuations is substantially smaller than the steady-state shear viscosity. This result is consistent with dispersion in the shear viscosity as revealed by viscosity measurements at 25, 55, and 81 MHz. The other term can be well described by a Debye-type relaxation function. It has been tentatively assigned to a structural isomerization of the butoxymethyl chain of the imidazole molecule. However, it cannot be completely excluded that this term reflects, at least in parts, a Brønstedt acid-base equilibrium or a specific association process.

3.
Phys Chem Chem Phys ; 16(8): 3549-57, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24413748

RESUMO

During this research, we present a study on the thermal properties, such as the melting, cold crystallization, and glass transition temperatures as well as heat capacities from 293.15 K to 323.15 K of nine in-house synthesized protic ionic liquids based on the 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate ([H-Im-C1OC(n)][Sal]) with n = 3-11. The 3D structures, surface charge distributions and COSMO volumes of all investigated ions are obtained by combining DFT calculations and the COSMO-RS methodology. The heat capacity data sets as a function of temperature of the 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate are then predicted using the methodology originally proposed in the case of ionic liquids by Ge et al. 3-(Alkoxymethyl)-1H-imidazol-3-ium salicylate based ionic liquids present specific heat capacities higher in many cases than other ionic liquids that make them suitable as heat storage media and in heat transfer processes. It was found experimentally that the heat capacity increases linearly with increasing alkyl chain length of the alkoxymethyl group of 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate as was expected and predicted using the Ge et al. method with an overall relative absolute deviation close to 3.2% for temperatures up to 323.15 K.

5.
J Hazard Mater ; 427: 128160, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34979392

RESUMO

Ionic liquids (ILs) are known for their unique physicochemical properties. However, despite the great number of published papers, still little attention has been paid to their biological activity. Anticancer potential and the molecular mechanisms underlying the toxicity of these compounds are especially interesting and still unexplored. In the current work, a broad analysis of the cytotoxicity towards colon and breast cancers as well as glioblastoma of the ILs with pyridinium, piperidinium, pyrrolidinium, and imidazolium cations and trifluoromethanesulfonate or bis(trifluoromethylsulfonyl)imide anions indicated previously as the most toxic for normal human dermal fibroblasts were presented. In the case of MCF-7 cells, the activity of 1-decyl-3-methylimidazolium trifluoromethanesulfonate was more than twice as high as cisplatin. It was found that the inhibition of the cell cycle of colon cancer and glioblastoma cells occurs in different phases. More importantly, the different types of cell death were detected for both selected ILs, namely 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-hexyl-3-methylimidazolium trifluoromethane-sulfonate, on colon cancer and glioblastoma, respectively, apoptosis and autophagy, confirmed at the gene and protein levels. Additionally, kinetic studies of the reactive oxygen species indicated that the tested ILs disturbed the cellular redox homeostasis.


Assuntos
Líquidos Iônicos , Ânions , Humanos , Imidas , Cinética , Mesilatos
6.
ACS Appl Mater Interfaces ; 14(45): 50836-50848, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36331877

RESUMO

Investments in the transfer and storage of thermal energy along with renewable energy sources strengthen health and economic infrastructure. These factors intensify energy diversification and the more rapid post-COVID recovery of economies. Ionanofluids (INFs) composed of long multiwalled carbon nanotubes (MWCNTs) rich in sp2-hybridized atoms and ionic liquids (ILs) display excellent thermal conductivity enhancement with respect to the pure IL, high thermal stability, and attractive rheology. However, the influence of the morphology, physicochemistry of nanoparticles and the IL-nanostructure interactions on the mechanism of heat transfer and rheological properties of INFs remain unidentified. Here, we show that intertube nanolayer coalescence, supported by 1D geometry assembly, leads to the subzipping of MWCNT bundles and formation of thermal bridges toward 3D networks in the whole INF volume. We identified stable networks of straight and bent MWCNTs separated by a layer of ions at the junctions. We found that the interactions between the ultrasonication-induced breaking nanotubes and the cations were covalent in nature. Furthermore, we found that the ionic layer imposed by close MWCNT surfaces favored enrichment of the cis conformer of the bis(trifluoromethylsulfonyl)imide anion. Our results demonstrate how the molecular perfection of the MWCNT structure with its supramolecular arrangement affects the extraordinary thermal conductivity enhancement of INFs. Thus, we gave the realistic description of the interactions at the IL-CNT interface with its (super)structure and chemistry as well as the molecular structure of the continuous phase. We anticipate our results to be a starting point for more complex studies on the supramolecular zipping mechanism. For example, ionically functionalized MWCNTs toward polyionic systems─of projected and controlled nanolayers─could enable the design of even more efficient heat-transfer fluids and miniaturization of flexible electronics.

7.
Sci Total Environ ; 745: 141032, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32726691

RESUMO

Plants are masterpieces of evolution that is based on carbon chemistry. In particular, plant leaves are biosynthetic factories able to convert CO2 into carbohydrates and oxygen. It is worth noting that mimicking the efficiency of a natural plant and natural leaf is still a challenge for contemporary chemistry. We can even better realize this when we notice that a plant and an industrial factory are equivalent in meaning. On the other hand, green technologies are under development in a quest for the artificial leaf. If we could modify the synthetic pathways in leaves, we could also design green chemistry schemes in natural leaves to produce useful chemicals or to digest wastes or toxins. Specifically, can we intensify the potential for capturing atmospheric CO2 in leaves? Auxins are plant hormones that control the growth and development of plants. Herein, we determined whether we could efficiently transport xenobiotic auxin into leaves and if so, whether this supply could enhance the metabolism and CO2 capturing ability. By exploring a series of dioxolanes as potential enhancers of auxin transport, we discovered for the first time that a small molecular compound, 2,2-dimethyl-1,3-dioxolane (DMD), enhances the xenobiotic auxin transport to leaves, which boosts the metabolism that is measured by H2O2 production as well as CO2 capturing ability in leaves.


Assuntos
Dióxido de Carbono , Ácidos Indolacéticos , Transporte Biológico , Peróxido de Hidrogênio , Fotossíntese , Folhas de Planta
8.
J Phys Chem B ; 121(42): 9886-9894, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28950058

RESUMO

Ultrasound absorption spectra within the frequency range 10-300 MHz were determined for 1-propyl- and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imides at ambient pressure and at temperatures in the ranges 293.15-313.15 and 293.15-323.15 K, respectively. For both compounds, a single Debye model (relaxation times between 0.451 and 0.778 ns) thoroughly describes the observed ultrasound absorption spectra in the investigated ranges. The spectra resemble those observed for imidazolium-based ionic liquids with the same anion. The ultrasound relaxation is dependent on the alkyl chain length of pyrrolidinium ring. In comparison to adequate imidazolium-based bis(trifluoromethylsulfonyl)imides, the relaxation in pyrrolidinium-based bis(trifluoromethylsulfonyl)imides is stronger; the pyrrolidinium cation causes clearly greater absorption than the imidazolium cation. Also, estimated ultrasound velocity dispersion is stronger in the case of pyrrolidinium imides in comparison to imidazolium imides. In turn, comparison of the ultrasonic data and literature data for the dielectric spectra exemplified for the 1-butyl- side chain in the cation indicates strong coupling in the case of imidazolium ring and weak coupling in the case of pyrrolidinium ring. The effect of absorption on the speed of sound is also discussed.

9.
J Phys Chem B ; 120(14): 3569-81, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26982480

RESUMO

Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides were determined as a function of the alkyl chain length on the cation from 1-propyl to 1-hexyl from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally, the speed of sound, density, and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e., relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single-Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.

10.
Ultrasonics ; 54(1): 368-74, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23694675

RESUMO

The so-called Beyer nonlinearity parameter B/A is calculated for 1,2- and 1,3-propanediol, 1,2-, 1,3-, and 1,4-butanediol, as well as 2-methyl-2,4-pentanediol by means of a thermodynamic method. The calculations are made for temperatures from (293.15 to 318.15) K and pressures up to 100 MPa. The decrease in B/A values with the increasing pressure is observed. In the case of 1,3-butanediol, the results are compared with corresponding literature data. The consistency is very satisfactory. A simple relationship between the internal pressure and B/A nonlinearity parameter has also been studied.


Assuntos
Alcanos/análise , Alcanos/química , Técnicas de Imagem por Elasticidade/instrumentação , Teste de Materiais/instrumentação , Transdutores , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Dinâmica não Linear , Pressão
11.
J Phys Chem B ; 118(22): 5934-42, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24807000

RESUMO

Ultrasonic relaxation spectra were determined for lower vicinal and terminal alkanediols at ambient pressure and a temperature of 298.15 K. The ultrasound absorption measurements were made by means of the standard pulse technique for 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 2,3-butanediol, and 1,5-pentanediol within the frequency range of 5-300 or 10-300 MHz. Relaxation processes were observed for all compounds except 1,2-ethanediol. The relaxation regions were dependent on both the carbon chain length and the position of hydroxyl groups. In addition, the terminal diols showed lower absorption than the adequate vicinal diols did. The results are discussed in terms of molecular structure and molecular interactions, as well as compared with the behavior of adequate lower 1-alkanols. A comparison with classical absorption is also made. The results are discussed in term of shear viscosity relaxation.

12.
J Phys Chem B ; 117(14): 3867-76, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23510074

RESUMO

Acoustic properties of three (1-ethyl-, 1-butyl-, and 1-octyl-) 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide room-temperature ionic liquids are reported and discussed. The speeds of sound in RTILs were measured as a function of temperature in the range 288-323 K by means of a sing around method. The densities and isobaric heat capacities were determined from 288.15 to 363.15 K and from 293.15 to 323.15 K, respectively. The related properties, like isentropic and isothermal compressibilities, isobaric coefficients of thermal expansion, molar isochoric heat capacities, and internal pressures, were calculated. It was found that for some ionic liquids, temperature dependence of isobaric coefficients of thermal expansion is small and negative. All investigations were completed by the ultrasound absorption coefficient measurements in 1-ethyl- and 1-octyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide as a function of frequency from 10 to 300 MHz at temperatures 293.15-298.15 K. The ultrasound absorption spectra indicate relaxation frequencies in the megahertz range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA