Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Nature ; 618(7963): 80-86, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36990110

RESUMO

All-perovskite tandem solar cells provide high power conversion efficiency at a low cost1-4. Rapid efficiency improvement in small-area (<0.1 cm2) tandem solar cells has been primarily driven by advances in low-bandgap (approximately 1.25 eV) perovskite bottom subcells5-7. However, unsolved issues remain for wide-bandgap (> 1.75 eV) perovskite top subcells8, which at present have large voltage and fill factor losses, particularly for large-area (>1 cm2) tandem solar cells. Here we develop a self-assembled monolayer of (4-(7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid as a hole-selective layer for wide-bandgap perovskite solar cells, which facilitates subsequent growth of high-quality wide-bandgap perovskite over a large area with suppressed interfacial non-radiative recombination, enabling efficient hole extraction. By integrating (4-(7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid in devices, we demonstrate a high open-circuit voltage (VOC) of 1.31 V in a 1.77-eV perovskite solar cell, corresponding to a very low VOC deficit of 0.46 V (with respect to the bandgap). With these wide-bandgap perovskite subcells, we report 27.0% (26.4% certified stabilized) monolithic all-perovskite tandem solar cells with an aperture area of 1.044 cm2. The certified tandem cell shows an outstanding combination of a high VOC of 2.12 V and a fill factor of 82.6%. Our demonstration of the large-area tandem solar cells with high certified efficiency is a key step towards scaling up all-perovskite tandem photovoltaic technology.

2.
Small ; : e2401093, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682733

RESUMO

Rare-earth halide double perovskites (DPs) have attracted extensive attention due to their excellent optoelectronic performance. However, the correlation between luminescence performance, crystal structure, and temperature, as well as the inherent energy transfer mechanism, is not well understood. Herein, Lanthanide ions (Ln3+: Nd3+ or Dy3+) as the co-dopants are incorporated into Sb3+ doped Cs2NaYbCl6 DPs to construct energy transfer (ET) models to reveal the effects of temperature and energy levels of rare earth on luminescence and ET. The different excited state structures of Sb3+-Ln3+ doped Cs2NaYbCl6 DPs at different temperatures and relative positions of energy levels of rare earth synergistically determine the physical processes of luminescence. These multi-mode luminescent materials exhibit good performance in anti-counterfeiting, NIR imaging, and temperature sensing. This work provides new physical insights into the effects of temperature and energy levels of rare earth on the energy transfer mechanism and related photophysical process.

3.
Opt Lett ; 49(10): 2553-2556, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748103

RESUMO

Plenty of exotic phenomena in moiré superlattices arise from the emergence of flatbands, but their significance could be diminished by structural disorders that will significantly alter flatbands. Thus, unveiling the effects of disorder on moiré flatbands is crucial. In this work, we explore the disorder effects on two sets of flatbands in silicon-based mismatched moiré superlattices, where the level of disorder is controlled by varying the magnitude of random perturbations of the locations of silicon strips. The results reveal that, after ensemble averaging, the average spectral positions of the four flatbands exhibit stability despite variations in the degree of disorder. However, the δ-like density of states (DOS) related to flatbands in the perfect superlattice evolves into a finite-width envelope of high DOS. By increasing the level of disorder, the width of the DOS envelope increases accordingly. Particularly, we observe a fascinating contrast: the width of bandgap flatbands saturates after initial growth, while the width of dispersive-band-crossed flatbands exhibits a linear increase versus the disorder. This unveils fundamental differences in how flatbands respond to structural imperfections, offering crucial insights into their perturbation characteristics within moiré superlattices. Our work offers new perspectives on flatbands in partially disordered moiré superlattices.

4.
Inorg Chem ; 63(9): 4355-4363, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38383064

RESUMO

Organic-inorganic metal halides have become one of the most promising materials in the next generation of optoelectronic applications due to their high charge carrier mobility and tunable band gaps. In this study, Sb:PA6InCl9 and Sb:PA4NaInCl8 single crystals were prepared through evaporation crystallization, respectively. Due to the different degrees of lattice distortions, the highly efficient yellow emission in Sb:PA6InCl9 at 610 nm and the green emission in Sb:PA4NaInCl8 at 545 nm were achieved by regulation of the excited state, respectively. By introducing additional sodium ions in the post-treatment, we found that the zero-dimensional Sb:PA6InCl9 could rapidly convert into a two-dimensional layered structure of Sb:PA4NaInCl8, thus resulting in a novel green/yellow emission switch. This work guides the structural and performance control of organic-inorganic hybrid In-based metal halides and offers broad prospects for luminescent switching in anticounterfeiting applications.

5.
Nanotechnology ; 35(26)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38467061

RESUMO

For applications in magneto-electronic devices, diluted magnetic semiconductors (DMSs) usually exhibit spin-dependent coupling and induced ferromagnetism at high Curie temperatures. The processes behind the behavior of optical emission and ferromagnetism, which can be identified by complicated microstructural and chemical characteristics, are still not well understood. In this study, the impact of Al co-doping on the electronic, optical, and magnetic properties of Ni(II) doped ZnO monolayers has been investigated using first principles calculations. Ferromagnetism in the co-doped monolayer is mainly triggered by the exchange coupling between the electrons provided by Al co-doping and Ni(II)-dstates; therefore, the estimated Curie temperature is greater than room temperature. The spin-spin couplings in mono-doped and co-doped monolayers were explained using the band-coupling mechanism. Based on the optical study, we observed that the Ni-related absorption peak occurred at 2.13-2.17 eV, showing a redshift as Ni concentrations increased. The FM coupling between Ni ions in the co-doped monolayer may be responsible for the reduction in the fundamental band gap seen with Al co-doping. We observed peaks in the near IR and visible regions of the co-doped monolayer, which improve the optoelectronic device's photovoltaic performance. Additionally, the correlation between optical characteristics and spin-spin couplings has been studied. We found that the Ni(II)'sd-dtransition bands or fundamental band gap in the near configuration undergoes a significant shift in response to AFM and FM coupling, whereas in the far configuration, they have a negligible shift due to the paramagnetic behavior of the Ni ions. These findings suggest that the magnetic coupling in DMS may be utilized for controlling the optical characteristics.

6.
Nanotechnology ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838646

RESUMO

The transition metal ions doping in II-VI semiconductor can produce exciton magnetic polaron (EMP) and localized EMP, in which contain longitudinal optical (LO) phonon coupling will be discussed in this paper. Transition metal ion doping in II-VI semiconductor for dilute magnetic semiconductor (DMS) show emission by magnetic polarons together with hot carrier effect that need to be understand by its optical properties. The high excitation power responsible for hot carrier effect that suppressed the charge trapping effect for low exciton binding energy (8.12 meV) semiconductor even at room temperature. The large polaron radius exhibits strong interaction between carrier and magnetic polaron results anharmonicty effect in which side-band energy overtone to LO phonon. The photon-like polariton show the polarized spin interaction with LO that show strong spin-phonon polariton at room temperature. The temperature-dependent photoluminescence spectra of Ni-doped ZnTe show free exciton (FX), FX interact with 2LO phonon-spin interaction corresponding to 3T1(3F) → 1T1(1G) and EMP peaks with ferromagnetically coupled Ni ions at 3T1(3F) → 1E(1G). In addition, other d-d transition of single Ni ions (600-900 nm) appears at low energy side. Room temperature energy shift of 14-38 meV due to localized states with density of states tails extending far into bandgap related spin induced localization at valance band. These results show spin-spin magnetic coupling and spin-phonon interaction at room temperature that open a new horizon of optically controlled dilute magnetic semiconductor applications more realistic.

7.
Small ; 19(45): e2303247, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37420332

RESUMO

High color purity blue quantum dot light-emitting diodes (QLEDs) have great potential applications in the field of ultra-high-definition display. However, the realization of eco-friendly pure-blue QLEDs with a narrow emission linewidth for high color purity remains a significant challenge. Herein, a strategy for fabricating high color purity and efficient pure-blue QLEDs based on ZnSeTe/ZnSe/ZnS quantum dots (QDs) is presented. It is found that by finely controlling the internal ZnSe shell thickness of the QDs, the emission linewidth can be narrowed by reducing the exciton-longitudinal optical phonon coupling and trap states in the QDs. Additionally, the regulation of the QD shell thickness can suppress the Förster energy transfer between QDs in the QLED emission layer, which will help to reduce the emission linewidth of the device. As a result, the fabricated pure-blue (452 nm) ZnSeTe QLED with ultra-narrow electroluminescence linewidth (22 nm) exhibit high color purity with the Commission Internationale de l'Eclairage chromatic coordinates of (0.148, 0.042) and considerable external quantum efficiency (18%). This work provides a demonstration of the preparation of pure-blue eco-friendly QLEDs with both high color purity and efficiency, and it is believed that it will accelerate the application process of eco-friendly QLEDs in ultra-high-definition displays.

8.
Small ; 19(32): e2301680, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37026654

RESUMO

Rare earth-doped metal oxide nanocrystals have a high potential in display, lighting, and bio-imaging, owing to their excellent emission efficiency, superior chemical, and thermal stability. However, the photoluminescence quantum yields (PLQYs) of rare earth-doped metal oxide nanocrystals have been reported to be much lower than those of the corresponding bulk phosphors, group II-VI, and halide-based perovskite quantum dots because of their poor crystallinity and high-concentration surface defects. Here, an ultrafast and room-temperature strategy for the kilogram-scale synthesis of sub-5 nm Eu3+ -doped CaMoO4 nanocrystals is presented, and this reaction can be finished in 1 min under ambient conditions. The absolute PLQYs for sub-5 nm Eu3+ -doped CaMoO4 nanocrystals can reach over 85%, which are comparable to those of the corresponding bulk phosphors prepared by the high-temperature solid state reaction. Moreover, the as-produced nanocrystals exhibit a superior thermal stability and their emission intensity unexpectedly increases after sintering at 600 °C for 2 h in air. 1.9 kg of Eu3+ -doped CaMoO4 nanocrystals with a PLQY of 85.1% can be obtained in single reaction.

9.
Opt Express ; 31(14): 22569-22579, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37475364

RESUMO

The self-accelerating beams such as the Airy beam show great potentials in many applications including optical manipulation, imaging and communication. However, their superior features during linear propagation could be easily corrupted by optical nonlinearity or spatial incoherence individually. Here we investigate how the interaction of spatial incoherence and nonlinear propagation affect the beam quality of Airy beam, and find that the two destroying factors can in fact balance each other. Our results show that the influence of coherence and nonlinearity on the propagation of partially incoherent Airy beams (PIABs) can be formulated as two exponential functions that have factors of opposite signs. With appropriate spatial coherence length, the PIABs not only resist the corruption of beam profile caused by self-focusing nonlinearity, but also exhibits less anomalous diffraction caused by the self-defocusing nonlinearity. Our work provides deep insight into how to maintain the beam quality of self-accelerating Airy beams by exploiting the interaction between partially incoherence and optical nonlinearity. Our results may bring about new possibilities for optimizing partially incoherent structured field and developing related applications such as optical communication, incoherent imaging and optical manipulations.

10.
Inorg Chem ; 62(7): 3075-3083, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36751993

RESUMO

Cadmium-based perovskite materials as promising optoelectronic materials have been widely explored, but there are still some special microscopic interaction-dependent properties not fully understood. Here, we successfully synthesized Cs7(Cd1-XMnX)3Br13 crystal by a simple hydrothermal method. In Cs7Cd3Br13 crystals with their intrinsic self-trapped exciton (STE) emission, Cd2+ ions stay in both different coordination sites, and partial replacement of Cd2+ with Mn2+ can modify their luminescence properties significantly. The luminescence peak position of the doped sample was adjusted from 610 nm in the undoped sample to 577 nm in the doped one by the combination of STE and Mn d-d transition, with enhanced photoluminescence quantum yield (PLQY) of ∼50% at a Mn precursor ratio of 40%. Their magnetic responses occur from the coexisting ferromagnetic (FM) and antiferromagnetic (AFM) coupling of Mn pairs in four and six coordination sites, modifying its whole emission profile. This material is valuable for studying the structure-optical properties and finding applications in optoelectronic devices.

11.
Nanotechnology ; 35(11)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38086072

RESUMO

Lead-free halide double perovskites are considered as one of the most promising materials in optoelectronic devices, such as solar cells, photodetectors, and light-emitting diodes (LEDs), due to their environmental friendliness and chemical stability. However, the extremely low photoluminescence quantum yield (PLQY) of self-trapped excitons (STEs) emission from lead-free halide double perovskites impedes their applications. Herein, Sb3+ions were doped into rare-earth-based double perovskite Cs2NaScCl6single crystals (SCs), resulting in a large enhancement of PLQY from 12.57% to 87.37%. Moreover, by co-doping Sb3+and Ho3+into Cs2NaScCl6SCs, the emission color can be tuned from blue to red, due to an efficient energy transfer from STEs to Ho3+ions. Finally, the synthesized sample was used in multicolor LED, which exhibited excellent stability and optical properties. This work not only provides a new strategy for improving the optical properties of Cs2NaScCl6SCs, but also suggests its potential application in multicolor LEDs.

12.
Inorg Chem ; 61(18): 7143-7152, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35485212

RESUMO

Metal halide perovskites have flexible crystal and electronic structures and adjustable emission characteristics, which have very broad applications in the optoelectronic field. Among them, all-inorganic perovskites have attracted more attention than others in recent years because of their characteristics of large diffusion length, high luminescence efficiency, and good stability. In this work, Sb3+-doped RbCdCl3 crystalline powder was synthesized by a simple hydrothermal method, and its luminescence properties were studied, which showed a broad emission band with a large Stokes shift and efficient yellow light emission at about 596 nm at room temperature with a photoluminescence quantum yield of 91.7%. The emission came from the transition of the self-trapped exciton 1 (STE1) out of 3Pn (n = 0, 1, and 2) to S0 due to strong electron-phonon coupling, which scaled with increasing temperature. Moreover, its emission color became white at low temperatures due to the occurrence of transition of other self-trapped exciton 0 (STE0) state emission out of the 1S states of Sb ions to S0 in the lattice. These emission color changes may be used for temperature sensing, and this Sb3+-doped RbCdCl3 material expands the knowledge of the efficient luminescent inorganic material family for further applications of all-inorganic perovskites.

13.
Inorg Chem ; 61(31): 12406-12414, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35877167

RESUMO

Lead-based metal halide perovskites have received widespread attention for their promising application prospects in the field of lighting and display due to their excellent optical properties. However, the toxicity of lead may hinder their further commercial application. Herein, a zero-dimensional (0D) metal halide (NH4)2InCl5·H2O with an orthorhombic structure and the Pnma space group was produced. With doping with Sb3+, these products exhibit one highly efficient and wide yellow emission band (∼450-850 nm) in their photoluminescence (PL) spectra, which covers almost the entire visible spectral range at room temperature; however, they give two emission bands with long decay lifetimes (microseconds) at low temperature. Temperature-dependent steady-state PL, transient PL spectroscopy, temperature-dependent Raman spectra characterization, and theoretical band structure calculations confirm that the dual-band emission at low temperature originates from the dual vibronic levels of the self-trapped exciton (STE) in the hole-vibration state, whose vibration energy is related to the H2O-NH4+ connection in the valence band. This result proves that the vibronic state in STE formation involves both electrons and holes in the excited states, the opposite of this happens in the electron-vibration band in most perovskite halides. These results provide new insight into the luminescent mechanism of Sb3+ in halide perovskites, especially used for emission color modulation by the temperature-dependent electron- or hole-vibration processes.

14.
Inorg Chem ; 61(3): 1486-1494, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34982544

RESUMO

Controlling the structure of halide perovskites through component engineering, and thus revealing the changes in luminescence properties caused by the conversion of crystal structure, is of great significance. Herein, we report a controllable synthetic strategy of three-dimensional (3D) Cs2KInCl6 and zero-dimensional (0D) (Cs/K)2InCl5(H2O) halide perovskites by changing the Cs/K feed ratio. 3D Cs2KInCl6 double perovskites are obtained at the Cs/K feed ratio of 1:1, while 0D (Cs/K)2InCl5(H2O) perovskites are formed at the Cs/K feed ratio of 2:1. Further, a reversible crystal structure transformation between 3D Cs2KInCl6 double perovskites and 0D (Cs/K)2InCl5(H2O) perovskites can be achieved by subsequent addition of metal-salt precursors. In addition, the emission efficiency of two perovskite structures can be greatly boosted by breaking the forbidden transition through Sb doping, and as a result, a novel green/yellow reversible emission switch is generated. Meanwhile, the relationship between perovskite structure and luminescence mechanism has been systematically revealed. These environmentally stable halide perovskites have great potential to be applied in optoelectronic devices.

15.
Molecules ; 27(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080479

RESUMO

In this work, we performed a systematic comparison of different duration of solvent vapor annealing (SVA) treatment upon state-of-the-art PM6:SY1 blend film, which is to say for the first time, the insufficient, appropriate, and over-treatment's effect on the active layer is investigated. The power conversion efficiency (PCE) of corresponding organic solar cell (OSC) devices is up to 17.57% for the optimized system, surpassing the two counterparts. The properly tuned phase separation and formed interpenetrating network plays an important role in achieving high efficiency, which is also well-discussed by the morphological characterizations and understanding of device physics. Specifically, these improvements result in enhanced charge generation, transport, and collection. This work is of importance due to correlating post-treatment delicacy, thin-film morphology, and device performance in a decent way.

16.
Molecules ; 27(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144539

RESUMO

Multicomponent organic solar cells (OSCs), such as the ternary and quaternary OSCs, not only inherit the simplicity of binary OSCs but further promote light harvesting and power conversion efficiency (PCE). Here, we propose a new type of multicomponent solar cells with non-fullerene acceptor isomers. Specifically, we fabricate OSCs with the polymer donor J71 and a mixture of isomers, ITCF, as the acceptors. In comparison, the ternary OSC devices with J71 and two structurally similar (not isomeric) NFAs (IT-DM and IT-4F) are made as control. The morphology experiments reveal that the isomers-containing blend film demonstrates increased crystallinity, more ideal domain size, and a more favorable packing orientation compared with the IT-DM/IT-4F ternary blend. The favorable orientation is correlated with the balanced charge transport, increased exciton dissociation and decreased bimolecular recombination in the ITCF-isomer-based blend film, which contributes to the high fill factor (FF), and thus the high PCE. Additionally, to evaluate the generality of this method, we examine other acceptor isomers including IT-M, IXIC-2Cl and SY1, which show same trend as the ITCF isomers. These results demonstrate that using isomeric blends as the acceptor can be a promising approach to promote the performance of multicomponent non-fullerene OSCs.

17.
Opt Express ; 29(22): 35664-35677, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34808996

RESUMO

Scattering and correlation properties of a two-photon (TP) pulse are studied in a four-terminal waveguide system, i.e., two one-dimensional waveguides connected by a Jaynes-Cummings emitter (JCE). The wave function approach is utilized to exactly calculate the real-time dynamic evolution of the TP transport. When the width of the incident TP Gaussian pulse is much larger than the photon wavelength, the TP transmission spectra approach that of the corresponding single photon cases and are almost independent of the pulse width. On the contrary, as the pulse width is comparable to the photon wavelength, the TP transmission and correlation both show strong dependence on the pulse width. The resonant scattering due to the JCE and the photon interference together determine the TP correlation. When the distance between the TPs is small, the TP correlations between any two terminals for the scattered TP pulse are much different from those for the incident TP pulse and therefore, such a four-terminal waveguide system provides a way to control the TP correlation.

18.
Phys Chem Chem Phys ; 23(17): 10153-10163, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33890582

RESUMO

In organic-inorganic hybrid ionic lead halide perovskites with a naturally arranged layered structure, the dielectric polarization effect caused by the dielectric mismatch between the organic and inorganic layers takes effect in their optical responses. But this effect has received little attention. Here we used infrared transient spectroscopy to study FAPbBr3 perovskite polycrystalline films before and after PMMA film passivation and found that there is a dielectric polarization effect at the interface between the organic cation layer and the inorganic lattice layer inside the perovskite lattice, and also at the interface between the PMMA film and perovskite film. Due to the dielectric polarization effect and the spatial confinement of the surface electronic (or polaron) state, the luminescence intensity of the passivated perovskite film is significantly enhanced, and the exciton lifetime is greatly increased. Dielectric polarization enhances their efficient transient absorption (TA) and leads to the intramolecular vibration frequency red-shifts, which exhibited the combined relaxation kinetics of the large polaron with dielectric polarization in the perovskite film. Dielectric polarization between the internal lattice and the nanocrystal surface of the perovskite film shows different relaxation processes. The polarization-dependent TA spectrum reveals that the dielectric polarization field causes light-induced anisotropy by changing the chemical bond configurations. These direct TA experimental observations help us to understand the influence of the dielectric polarization effect on the electronic state in various organic-inorganic nanocomposite perovskites.

19.
Phys Chem Chem Phys ; 23(32): 17113-17128, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34346439

RESUMO

Inorganic lead halide perovskite (ILHP) nanocrystals (NCs) show great potential in solid state lighting and next generation display technology due to their excellent optical properties. However, almost all ILHP NCs are still facing the problem of unstable luminescence properties caused by heating and/or UV illumination. Further improving the thermal and photo stability of ILHP NCs has become the most urgent challenge for their practical application. This Perspective review specifically focuses on the thermal and photo stability of ILHP NCs, discusses and analyzes the factors that affect the thermal and photo stability of ILHP NCs from the perspective of surface ligands and structure composition, summarizes the current strategies to improve the thermal and photo stability of ILHP NCs, and presents the key challenges and perspectives on the research for the improvement of thermal and photo stability of ILHP NCs.

20.
Opt Express ; 28(7): 9136-9148, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225526

RESUMO

Two coupled exciton-polariton condensates (EPCs) in a double-well photonic potential are suggested to form the optical Josephson oscillation (JO) whose dependences on the pump arrangement, the potential geometry, and the exciton-photon detuning are studied through the Gross-Pitaevskii equations. When the pump detuning is slightly positive with respect to the polariton energy and the phase difference between the two EPCs is near π/2 (both are controlled by the pump beams), the system demonstrates the optical JO. The optical JO tunneling strength (J) depends on the distance (d) and barrier (Λ) between the two wells, for which an empirical formula is fitted, i.e., J≈0.42exp⁡(-d Λ/18.4) with the energy and length units in meV and µm. Since the double-well potential adopted is general, this fitting relation can show a guidance in practice for designing the optical devices based on the optical JO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA