Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nature ; 496(7443): 91-5, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23535592

RESUMO

About 8,000 years ago in the Fertile Crescent, a spontaneous hybridization of the wild diploid grass Aegilops tauschii (2n = 14; DD) with the cultivated tetraploid wheat Triticum turgidum (2n = 4x = 28; AABB) resulted in hexaploid wheat (T. aestivum; 2n = 6x = 42; AABBDD). Wheat has since become a primary staple crop worldwide as a result of its enhanced adaptability to a wide range of climates and improved grain quality for the production of baker's flour. Here we describe sequencing the Ae. tauschii genome and obtaining a roughly 90-fold depth of short reads from libraries with various insert sizes, to gain a better understanding of this genetically complex plant. The assembled scaffolds represented 83.4% of the genome, of which 65.9% comprised transposable elements. We generated comprehensive RNA-Seq data and used it to identify 43,150 protein-coding genes, of which 30,697 (71.1%) were uniquely anchored to chromosomes with an integrated high-density genetic map. Whole-genome analysis revealed gene family expansion in Ae. tauschii of agronomically relevant gene families that were associated with disease resistance, abiotic stress tolerance and grain quality. This draft genome sequence provides insight into the environmental adaptation of bread wheat and can aid in defining the large and complicated genomes of wheat species.


Assuntos
Adaptação Fisiológica/genética , Genoma de Planta/genética , Poaceae/genética , Triticum/genética , Brachypodium/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Elementos de DNA Transponíveis/genética , Resistência à Doença/genética , Genes de Plantas/genética , Hordeum/genética , Dados de Sequência Molecular , Doenças das Plantas , Poliploidia , Análise de Sequência de RNA , Fatores de Transcrição/genética , Triticum/fisiologia
2.
Plant Cell ; 25(8): 2813-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23983221

RESUMO

The Brassicaceae, including Arabidopsis thaliana and Brassica crops, is unmatched among plants in its wealth of genomic and functional molecular data and has long served as a model for understanding gene, genome, and trait evolution. However, genome information from a phylogenetic outgroup that is essential for inferring directionality of evolutionary change has been lacking. We therefore sequenced the genome of the spider flower (Tarenaya hassleriana) from the Brassicaceae sister family, the Cleomaceae. By comparative analysis of the two lineages, we show that genome evolution following ancient polyploidy and gene duplication events affect reproductively important traits. We found an ancient genome triplication in Tarenaya (Th-α) that is independent of the Brassicaceae-specific duplication (At-α) and nested Brassica (Br-α) triplication. To showcase the potential of sister lineage genome analysis, we investigated the state of floral developmental genes and show Brassica retains twice as many floral MADS (for minichromosome maintenance1, AGAMOUS, DEFICIENS and serum response factor) genes as Tarenaya that likely contribute to morphological diversity in Brassica. We also performed synteny analysis of gene families that confer self-incompatibility in Brassicaceae and found that the critical serine receptor kinase receptor gene is derived from a lineage-specific tandem duplication. The T. hassleriana genome will facilitate future research toward elucidating the evolutionary history of Brassicaceae genomes.


Assuntos
Brassicaceae/genética , Evolução Molecular , Genoma de Planta/genética , Característica Quantitativa Herdável , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Anotação de Sequência Molecular , Filogenia , Mapeamento Físico do Cromossomo , Poliploidia , Reprodução/genética , Autoincompatibilidade em Angiospermas/genética , Análise de Sequência de DNA , Sintenia/genética , Fatores de Tempo
3.
Biochem J ; 449(2): 373-88, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23095045

RESUMO

Plant-specific DOF (DNA-binding with one finger)-type transcription factors regulate various biological processes. In the present study we characterized a silique-abundant gene AtDOF (Arabidopsis thaliana DOF) 4.2 for its functions in Arabidopsis. AtDOF4.2 is localized in the nuclear region and has transcriptional activation activity in both yeast and plant protoplast assays. The T-M-D motif in AtDOF4.2 is essential for its activation. AtDOF4.2-overexpressing plants exhibit an increased branching phenotype and mutation of the T-M-D motif in AtDOF4.2 significantly reduces branching in transgenic plants. AtDOF4.2 may achieve this function through the up-regulation of three branching-related genes, AtSTM (A. thaliana SHOOT MERISTEMLESS), AtTFL1 (A. thaliana TERMINAL FLOWER1) and AtCYP83B1 (A. thaliana CYTOCHROME P450 83B1). The seeds of an AtDOF4.2-overexpressing plant show a collapse-like morphology in the epidermal cells of the seed coat. The mucilage contents and the concentration and composition of mucilage monosaccharides are significantly changed in the seed coat of transgenic plants. AtDOF4.2 may exert its effects on the seed epidermis through the direct binding and activation of the cell wall loosening-related gene AtEXPA9 (A. thaliana EXPANSIN-A9). The dof4.2 mutant did not exhibit changes in branching or its seed coat; however, the silique length and seed yield were increased. AtDOF4.4, which is a close homologue of AtDOF4.2, also promotes shoot branching and affects silique size and seed yield. Manipulation of these genes should have a practical use in the improvement of agronomic traits in important crops.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Brotos de Planta/genética , Sementes/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Dados de Sequência Molecular , Monossacarídeos/metabolismo , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Protoplastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo
4.
Plant J ; 68(2): 302-13, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21707801

RESUMO

NAC transcription factors play important roles in plant growth, development and stress responses. Previously, we identified multiple NAC genes in soybean (Glycine max). Here, we identify the roles of two genes, GmNAC11 and GmNAC20, in stress responses and other processes. The two genes were differentially induced by multiple abiotic stresses and plant hormones, and their transcripts were abundant in roots and cotyledons. Both genes encoded proteins that localized to the nucleus and bound to the core DNA sequence CGT[G/A]. In the protoplast assay system, GmNAC11 acts as a transcriptional activator, whereas GmNAC20 functions as a mild repressor; however, the C-terminal end of GmANC20 has transcriptional activation activity. Over-expression of GmNAC20 enhances salt and freezing tolerance in transgenic Arabidopsis plants; however, GmNAC11 over-expression only improves salt tolerance. Over-expression of GmNAC20 also promotes lateral root formation. GmNAC20 may regulate stress tolerance through activation of the DREB/CBF-COR pathway, and may control lateral root development by altering auxin signaling-related genes. GmNAC11 probably regulates DREB1A and other stress-related genes. The roles of the two GmNAC genes in stress tolerance were further analyzed in soybean transgenic hairy roots. These results provide a basis for genetic manipulation to improve the agronomic traits of important crops.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Secas , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Congelamento , Proteínas de Fluorescência Verde , Ácidos Indolacéticos/metabolismo , Motivos de Nucleotídeos/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Protoplastos , Tolerância ao Sal , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Cloreto de Sódio/farmacologia , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Fatores de Transcrição/genética , Ativação Transcricional
5.
Plant J ; 68(5): 830-43, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21801253

RESUMO

The NIMA-related kinases (NEKs) are a family of serine/threonine kinases involved largely in cell cycle control in fungi, mammals and other eukaryotes. In Arabidopsis, NEK6 is involved in the regulation of epidermal cell morphogenesis. However, other roles of NEK6 in plants are less well understood. Here we report functions of NEK6 in plant growth, development and stress responses in Arabidopsis. NEK6 transcripts and proteins are induced by ethylene precursor ACC and salt stress. Expression of other NEK genes except NEK5 is also responsive to the two treatments. Overexpression and mutant analysis disclose that the NEK6 gene increases rosette growth, seed yield and lateral root formation. However, NEK6 appears to play a negative role in the control of seed size. The gene also promotes plant tolerance to salt stress and osmotic stress in its overexpressing plants. The NEK6 gene may achieve its function through suppression of ethylene biosynthesis and activation of CYCB1;1 and CYCA3;1 expression. Our present study reveals new functions of the NEK6 gene in plant growth and stress tolerance, and manipulation of NEK6 may improve important agronomic traits in crop plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Proteínas Quinases/metabolismo , Estresse Fisiológico , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Manitol/farmacologia , Mutagênese Insercional , Quinases Relacionadas a NIMA , Pressão Osmótica , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas Quinases/genética , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/enzimologia , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Sementes/ultraestrutura , Cloreto de Sódio/farmacologia
6.
Nat Commun ; 13(1): 5913, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207301

RESUMO

Genetic and environmental factors collectively determine plant growth and yield. In the past 20 years, genome-wide association studies (GWAS) have been conducted on crops to decipher genetic loci that contribute to growth and yield, however, plant genotype appears to be insufficient to explain the trait variations. Here, we unravel the associations between genotypic, phenotypic, and rhizoplane microbiota variables of 827 foxtail millet cultivars by an integrated GWAS, microbiome-wide association studies (MWAS) and microbiome genome-wide association studies (mGWAS) method. We identify 257 rhizoplane microbial biomarkers associated with six key agronomic traits and validated the microbial-mediated growth effects on foxtail millet using marker strains isolated from the field. The rhizoplane microbiota composition is mainly driven by variations in plant genes related to immunity, metabolites, hormone signaling and nutrient uptake. Among these, the host immune gene FLS2 and transcription factor bHLH35 are widely associated with the microbial taxa of the rhizoplane. We further uncover a plant genotype-microbiota interaction network that contributes to phenotype plasticity. The microbial-mediated growth effects on foxtail millet are dependent on the host genotype, suggesting that precision microbiome management could be used to engineer high-yielding cultivars in agriculture systems.


Assuntos
Microbiota , Setaria (Planta) , Agricultura , Estudo de Associação Genômica Ampla , Genótipo , Hormônios , Microbiota/genética , Setaria (Planta)/genética , Fatores de Transcrição/genética
7.
Planta ; 232(5): 1033-43, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20683728

RESUMO

Plant-specific transcription factor NAC proteins play essential roles in many biological processes such as development, senescence, morphogenesis, and stress signal transduction pathways. In the NAC family, some members function as transcription activators while others act as repressors. In the present study we found that though the full-length GmNAC20 from soybean did not have transcriptional activation activity, the carboxy-terminal activation domain of GmNAC20 had high transcriptional activation activity in the yeast assay system. Deletion experiments revealed an active repression domain with 35 amino acids, named NARD (NAC Repression Domain), in the d subdomain of NAC DNA-binding domain. NARD can reduce the transcriptional activation ability of diverse transcription factors when fused to either the amino-terminal or the carboxy-terminal of the transcription factors. NARD-like sequences are also present in other NAC family members and they are functional repression domain when fused to VP16 in plant protoplast assay system. Mutation analysis of conserved amino acid residues in NARD showed that the hydrophobic LVFY motif may partially contribute to the repression function. It is hypothesized that the interactions between the repression domain NARD and the carboxy-terminal activation domain may finally determine the ability of NAC family proteins to regulate downstream gene expressions.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/genética , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Dados de Sequência Molecular , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ativação Transcricional/genética
8.
Plant Biotechnol J ; 6(5): 486-503, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18384508

RESUMO

WRKY-type transcription factors have multiple roles in the plant defence response and developmental processes. Their roles in the abiotic stress response remain obscure. In this study, 64 GmWRKY genes from soybean were identified, and were found to be differentially expressed under abiotic stresses. Nine GmWRKY proteins were tested for their transcription activation in the yeast assay system, and five showed such ability. In a DNA-binding assay, three proteins (GmWRKY13, GmWRKY27 and GmWRKY54) with a conserved WRKYGQK sequence in their DNA-binding domain could bind to the W-box (TTGAC). However, GmWRKY6 and GmWRKY21, with an altered sequence WRKYGKK, lost the ability to bind to the W-box. The function of three stress-induced genes, GmWRKY13, GmWRKY21 and GmWRKY54, was further investigated using a transgenic approach. GmWRKY21-transgenic Arabidopsis plants were tolerant to cold stress, whereas GmWRKY54 conferred salt and drought tolerance, possibly through the regulation of DREB2A and STZ/Zat10. Transgenic plants over-expressing GmWRKY13 showed increased sensitivity to salt and mannitol stress, but decreased sensitivity to abscisic acid, when compared with wild-type plants. In addition, GmWRKY13-transgenic plants showed an increase in lateral roots. These results indicate that the three GmWRKY genes play differential roles in abiotic stress tolerance, and that GmWRKY13 may function in both lateral root development and the abiotic stress response.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Congelamento , Genes de Plantas , Glycine max/genética , Cloreto de Sódio/farmacologia , Fatores de Transcrição/genética , Adaptação Fisiológica/efeitos dos fármacos , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , DNA de Plantas/metabolismo , Dimerização , Desastres , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dados de Sequência Molecular , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Análise de Sequência de DNA , Glycine max/efeitos dos fármacos , Fatores de Transcrição/química , Ativação Transcricional/efeitos dos fármacos
9.
G3 (Bethesda) ; 7(5): 1587-1594, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28364039

RESUMO

Foxtail millet (Setaria italica) is an important crop possessing C4 photosynthesis capability. The S. italica genome was de novo sequenced in 2012, but the sequence lacked high-density genetic maps with agronomic and yield trait linkages. In the present study, we resequenced a foxtail millet population of 439 recombinant inbred lines (RILs) and developed high-resolution bin map and high-density SNP markers, which could provide an effective approach for gene identification. A total of 59 QTL for 14 agronomic traits in plants grown under long- and short-day photoperiods were identified. The phenotypic variation explained ranged from 4.9 to 43.94%. In addition, we suggested that there may be segregation distortion on chromosome 6 that is significantly distorted toward Zhang gu. The newly identified QTL will provide a platform for sequence-based research on the S. italica genome, and for molecular marker-assisted breeding.


Assuntos
Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável , Setaria (Planta)/genética , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Endogamia , Melhoramento Vegetal , Análise de Sequência de DNA
10.
Gigascience ; 6(2): 1-8, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369461

RESUMO

Foxtail millet (Setaria italica) provides food and fodder in semi-arid regions and infertile land. Resequencing of 184 foxtail millet recombinant inbred lines (RILs) was carried out to aid essential research on foxtail millet improvement. A total 483 414 single nucleotide polymorphisms were determined. Bin maps were constructed based on the RILs' recombination data. Based on the high-density bin map, we updated Zhanggu reference with 416 Mb after adding 16 Mb unanchored scaffolds and Yugu reference with some assembly error correction and 3158 gaps filled. Quantitative trait loci (QTL) mapping of nine agronomic traits was done based on this RIL population, five of which were controlled by a single gene. Meanwhile, two QTLs were found for plant height, and a candidate gene showed 89% identity to the known rice gibberellin-synthesis gene sd1. Three QTLs were found for the trait of heading date. The whole genome resequencing and QTL mapping provided important tools for foxtail millet research and breeding. Resequencing of the RILs could also provide an effective way for high-quality genome assembly and gene identification.


Assuntos
Mapeamento Cromossômico , Genoma de Planta , Genômica/métodos , Endogamia , Característica Quantitativa Herdável , Recombinação Genética , Setaria (Planta)/genética , Pontos de Quebra do Cromossomo , Cromossomos de Plantas , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
11.
Gigascience ; 6(10): 1-12, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29050374

RESUMO

The root microbes play pivotal roles in plant productivity, nutrient uptakes, and disease resistance. The root microbial community structure has been extensively investigated by 16S/18S/ITS amplicons and metagenomic sequencing in crops and model plants. However, the functional associations between root microbes and host plant growth are poorly understood. This work investigates the root bacterial community of foxtail millet (Setaria italica) and its potential effects on host plant productivity. We determined the bacterial composition of 2882 samples from foxtail millet rhizoplane, rhizosphere and corresponding bulk soils from 2 well-separated geographic locations by 16S rRNA gene amplicon sequencing. We identified 16 109 operational taxonomic units (OTUs), and defined 187 OTUs as shared rhizoplane core OTUs. The ß-diversity analysis revealed that microhabitat was the major factor shaping foxtail millet root bacterial community, followed by geographic locations. Large-scale association analysis identified the potential beneficial bacteria correlated with plant high productivity. Besides, the functional prediction revealed specific pathways enriched in foxtail millet rhizoplane bacterial community. We systematically described the root bacterial community structure of foxtail millet and found its core rhizoplane bacterial members. Our results demonstrated that host plants enrich specific bacteria and functions in the rhizoplane. The potentially beneficial bacteria may serve as a valuable knowledge foundation for bio-fertilizer development in agriculture.


Assuntos
Microbiota , Milhetes/microbiologia , Rizoma/microbiologia , Bactérias/classificação , Bactérias/genética , Código de Barras de DNA Taxonômico , Genoma Bacteriano , RNA Ribossômico 16S/genética
13.
PLoS One ; 4(9): e7209, 2009 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-19789627

RESUMO

BACKGROUND: Soybean [Glycine max (L.) Merr.] is one of the most important crops for oil and protein resource. Improvement of stress tolerance will be beneficial for soybean seed production. PRINCIPAL FINDINGS: Six GmPHD genes encoding Alfin1-type PHD finger protein were identified and their expressions differentially responded to drought, salt, cold and ABA treatments. The six GmPHDs were nuclear proteins and showed ability to bind the cis-element "GTGGAG". The N-terminal domain of GmPHD played a major role in DNA binding. Using a protoplast assay system, we find that GmPHD1 to GmPHD5 had transcriptional suppression activity whereas GmPHD6 did not have. In yeast assay, the GmPHD6 can form homodimer and heterodimer with the other GmPHDs except GmPHD2. The N-terminal plus the variable regions but not the PHD-finger is required for the dimerization. Transgenic Arabidopsis plants overexpressing the GmPHD2 showed salt tolerance when compared with the wild type plants. This tolerance was likely achieved by diminishing the oxidative stress through regulation of downstream genes. SIGNIFICANCE: These results provide important clues for soybean stress tolerance through manipulation of PHD-type transcription regulator.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glycine max/genética , Proteínas de Soja/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Clonagem Molecular , Dimerização , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Ligação Proteica , Estrutura Terciária de Proteína , Protoplastos/metabolismo , Homologia de Sequência de Aminoácidos , Estresse Fisiológico
14.
PLoS One ; 4(9): e6898, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19730734

RESUMO

BACKGROUND: Trihelix transcription factors play important roles in light-regulated responses and other developmental processes. However, their functions in abiotic stress response are largely unclear. In this study, we identified two trihelix transcription factor genes GmGT-2A and GmGT-2B from soybean and further characterized their roles in abiotic stress tolerance. FINDINGS: Both genes can be induced by various abiotic stresses, and the encoded proteins were localized in nuclear region. In yeast assay, GmGT-2B but not GmGT-2A exhibits ability of transcriptional activation and dimerization. The N-terminal peptide of 153 residues in GmGT-2B was the minimal activation domain and the middle region between the two trihelices mediated the dimerization of the GmGT-2B. Transactivation activity of the GmGT-2B was also confirmed in plant cells. DNA binding analysis using yeast one-hybrid assay revealed that GmGT-2A could bind to GT-1bx, GT-2bx, mGT-2bx-2 and D1 whereas GmGT-2B could bind to the latter three elements. Overexpression of the GmGT-2A and GmGT-2B improved plant tolerance to salt, freezing and drought stress in transgenic Arabidopsis plants. Moreover, GmGT-2B-transgenic plants had more green seedlings compared to Col-0 under ABA treatment. Many stress-responsive genes were altered in GmGT-2A- and GmGT-2B-transgenic plants. CONCLUSION: These results indicate that GmGT-2A and GmGT-2B confer stress tolerance through regulation of a common set of genes and specific sets of genes. GmGT-2B also affects ABA sensitivity.


Assuntos
Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Glycine max/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Sequência de Aminoácidos , Núcleo Celular/metabolismo , Dimerização , Secas , Etiquetas de Sequências Expressas , Modelos Genéticos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Ativação Transcricional , Técnicas do Sistema de Duplo-Híbrido
15.
Cell Res ; 19(11): 1291-304, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19581938

RESUMO

MYB proteins play important roles in eukaryotic organisms. In plants, the R1R2R3-type MYB proteins function in cell cycle control. However, whether the R2R3-type MYB protein is also involved in the cell division process remains unknown. Here, we report that an R2R3-type transcription factor gene, AtMYB59, is involved in the regulation of cell cycle progression and root growth. The AtMYB59 protein is localized in the nuclei of onion epidermal cells and has transactivation activity. Expression of AtMYB59 in yeast cells suppresses cell proliferation, and the transformants have more nuclei and higher aneuploid DNA content with longer cells. Mutation in the conserved domain of AtMYB59 abolishes its effects on yeast cell growth. In synchronized Arabidopsis cell suspensions, the AtMYB59 gene is specifically expressed in the S phase during cell cycle progression. Expression and promoter-GUS analysis reveals that the AtMYB59 gene is abundantly expressed in roots. Transgenic plants overexpressing AtMYB59 have shorter roots compared with wild-type plants (Arabidopsis accession Col-0), and around half of the mitotic cells in root tips are at metaphase. Conversely, the null mutant myb59-1 has longer roots and fewer mitotic cells at metaphase than Col, suggesting that AtMYB59 may inhibit root growth by extending the metaphase of mitotic cells. AtMYB59 regulates many downstream genes, including the CYCB1;1 gene, probably through binding to MYB-responsive elements. These results support a role for AtMYB59 in cell cycle regulation and plant root growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ciclo Celular/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Divisão Celular/fisiologia , Ciclina B/genética , Ciclina B/metabolismo , Regulação da Expressão Gênica de Plantas , Cebolas/genética , Especificidade de Órgãos , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Fatores de Transcrição/genética , Leveduras/citologia , Leveduras/crescimento & desenvolvimento
16.
Cell Res ; 18(10): 1047-60, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18725908

RESUMO

MYB-type transcription factors contain the conserved MYB DNA-binding domain of approximately 50 amino acids and are involved in the regulation of many aspects of plant growth, development, metabolism and stress responses. From soybean plants, we identified 156 GmMYB genes using our previously obtained 206 MYB unigenes, and 48 were found to have full-length open-reading frames. Expressions of all these identified genes were examined, and we found that expressions of 43 genes were changed upon treatment with ABA, salt, drought and/or cold stress. Three GmMYB genes, GmMYB76, GmMYB92 and GmMYB177, were chosen for further analysis. Using the yeast assay system, GmMYB76 and GmMYB92 were found to have transactivation activity and can form homodimers. GmMYB177 did not appear to have transactivation activity but can form heterodimers with GmMYB76. Yeast one-hybrid assay revealed that all the three GmMYBs could bind to cis-elements TAT AAC GGT TTT TT and CCG GAA AAA AGG AT, but with different affinity, and GmMYB92 could also bind to TCT CAC CTA CC. The transgenic Arabidopsis plants overexpressing GmMYB76 or GmMYB177 showed better performance than the GmMYB92-transgenic plants in salt and freezing tolerance. However, these transgenic plants exhibited reduced sensitivity to ABA treatment at germination stage in comparison with the wild-type plants. The three GmMYB genes differentially affected a subset of stress-responsive genes in addition to their regulation of a common subset of stress-responsive genes. These results indicate that the three GmMYB genes may play differential roles in stress tolerance, possibly through regulation of stress-responsive genes.


Assuntos
Arabidopsis/genética , Glycine max/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/classificação , Arabidopsis/metabolismo , Congelamento , Regulação da Expressão Gênica de Plantas , Germinação/efeitos dos fármacos , Germinação/genética , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Cloreto de Sódio/metabolismo , Glycine max/metabolismo , Ativação Transcricional/efeitos dos fármacos
17.
Planta ; 228(2): 225-40, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18365246

RESUMO

From soybean plant, 131 bZIP genes were identified and named as GmbZIPs. The GmbZIPs can be classified into ten groups and more than one third of these GmbZIPs are responsive to at least one of the four treatments including ABA, salt, drought and cold stresses. Previous studies have shown that group A bZIP proteins are involved in ABA and stress signaling. We now chose four non-group A genes to study their features. The four proteins GmbZIP44, GmbZIP46, GmbZIP62 and GmbZIP78 belong to the group S, I, C and G, respectively, and can bind to GLM (GTGAGTCAT), ABRE (CCACGTGG) and PB-like (TGAAAA) elements with differential affinity in both the yeast one-hybrid assay and in vitro gel-shift analysis. GmbZIP46 can form homodimer or heterodimer with GmbZIP62 or GmMYB76. Transgenic Arabidopsis plants overexpressing the GmbZIP44, GmbZIP62 or GmbZIP78 showed reduced ABA sensitivity. However, all the transgenic plants were more tolerant to salt and freezing stresses when compared with the Col plants. The GmbZIP44, GmbZIP62 and GmbZIP78 may function in ABA signaling through upregulation of ABI1 and ABI2 and play roles in stress tolerance through regulation of various stress-responsive genes. These results indicate that GmbZIP44, GmbZIP62 and GmbZIP78 are negative regulators of ABA signaling and function in salt and freezing tolerance.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Glycine max/genética , Arabidopsis/genética , Clonagem Molecular , Temperatura Baixa , Dimerização , Expressão Gênica , Família Multigênica , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Salinidade , Transdução de Sinais , Especificidade por Substrato , Ativação Transcricional , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA