Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 422
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Differentiation ; 138: 100789, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38896972

RESUMO

Osteoclast (OC) differentiation, vital for bone resorption, depends on osteoclast and precursor fusion. Osteoprotegerin (OPG) inhibits osteoclast differentiation. OPG's influence on fusion and mechanisms is unclear. Osteoclasts and precursors were treated with OPG alone or with ATP. OPG significantly reduced OC number, area and motility and ATP mitigated OPG's inhibition. However, OPG hardly affected the motility of precusors. OPG downregulated fusion-related molecules (CD44, CD47, DC-STAMP, ATP6V0D2) in osteoclasts, reducing only CD47 in precursors. OPG reduced Connexin43 phosphorylated forms (P1 and P2) in osteoclasts, affecting only P2 in precursors. OPG disrupted subcellular localization of CD44, CD47, DC-STAMP, ATP6V0D2, and Connexin43 in both cell types. Findings underscore OPG's multifaceted impact, inhibiting multinucleated osteoclast and mononuclear precursor fusion through distinct molecular mechanisms. Notably, ATP mitigates OPG's inhibitory effect, suggesting a potential regulatory role for the ATP signaling pathway. This study enhances understanding of intricate processes in osteoclast differentiation and fusion, offering insights into potential therapeutic targets for abnormal bone metabolism.

2.
BMC Plant Biol ; 24(1): 173, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38443808

RESUMO

Polygonatum cyrtonema Hua is a traditional Chinese medicinal plant acclaimed for its therapeutic potential in diabetes and various chronic diseases. Its rhizomes are the main functional parts rich in secondary metabolites, such as flavonoids and saponins. But their quality varies by region, posing challenges for industrial and medicinal application of P. cyrtonema. In this study, 482 metabolites were identified in P. cyrtonema rhizome from Qingyuan and Xiushui counties. Cluster analysis showed that samples between these two regions had distinct secondary metabolite profiles. Machine learning methods, specifically support vector machine-recursive feature elimination and random forest, were utilized to further identify metabolite markers including flavonoids, phenolic acids, and lignans. Comparative transcriptomics and weighted gene co-expression analysis were performed to uncover potential candidate genes including CHI, UGT1, and PcOMT10/11/12/13 associated with these compounds. Functional assays using tobacco transient expression system revealed that PcOMT10/11/12/13 indeed impacted metabolic fluxes of the phenylpropanoid pathway and phenylpropanoid-related metabolites such as chrysoeriol-6,8-di-C-glucoside, syringaresinol-4'-O-glucopyranosid, and 1-O-Sinapoyl-D-glucose. These findings identified metabolite markers between these two regions and provided valuable genetic insights for engineering the biosynthesis of these compounds.


Assuntos
Polygonatum , Polygonatum/genética , Análise por Conglomerados , Flavonoides , Perfilação da Expressão Gênica , Aprendizado de Máquina
3.
Plant Biotechnol J ; 22(6): 1566-1581, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38205680

RESUMO

In plants under drought stress, sugar content in roots increases, which is important for drought resistance. However, the molecular mechanisms for controlling the sugar content in roots during response to drought remain elusive. Here, we found that the MdDOF3-MdHT1.2 module-mediated glucose influx into the root is essential for drought resistance in apple (Malus × domestica). Drought induced glucose uptake from the rhizosphere and up-regulated the transcription of hexose transporter MdHT1.2. Compared with the wild-type plants, overexpression of MdHT1.2 promoted glucose uptake from the rhizosphere, thereby facilitating sugar accumulation in root and enhancing drought resistance, whereas silenced plants showed the opposite phenotype. Furthermore, ATAC-seq, RNA-seq and biochemical analysis demonstrated that MdDOF3 directly bound to the promoter of MdHT1.2 and was strongly up-regulated under drought. Overexpression of MdDOF3 in roots improved MdHT1.2-mediated glucose transport capacity and enhanced plant resistance to drought, but MdDOF3-RNAihr apple plants showed the opposite phenotype. Moreover, overexpression of MdDOF3 in roots did not attenuate drought sensitivity in MdHT1.2-RNAi plants, which was correlated with a lower glucose uptake capacity and glucose content in root. Collectively, our findings deciphered the molecular mechanism through which glucose uptake from the rhizosphere is mediated by MdDOF3-MdHT1.2, which acts to modulate sugar content in root and promote drought resistance.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Glucose , Malus , Proteínas de Plantas , Plantas Geneticamente Modificadas , Rizosfera , Malus/genética , Malus/metabolismo , Glucose/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Resistência à Seca
4.
Plant Physiol ; 193(1): 410-425, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37061824

RESUMO

Plant roots can absorb sugars from the rhizosphere, which reduces the consumption of carbon derived from photosynthesis. However, the underlying mechanisms that roots use to control sugar absorption from soil are poorly understood. Here, we identified an apple (Malus × domestica Borkh.) hexose transporter, MdHT1.2, that functions on the root epidermis to absorb glucose (Glc) from the rhizosphere. Based on RNA-seq data, MdHT1.2 showed the highest expression level among 29 MdHT genes in apple roots. Biochemical analyses demonstrated that MdHT1.2 was mainly expressed in the epidermal cells of fine roots, and its protein was located on the plasma membrane. The roots of transgenic apple and Solanum lycopersicum lines overexpressing MdHT1.2 had an increased capability to absorb Glc when fed with [13C]-labeled Glc or 2-NBDG, whereas silencing MdHT1.2 in apple showed the opposite results. Further studies established that MdHT1.2-mediated Glc absorption from the rhizosphere changed the carbon assimilate allocation between apple shoot and root, which regulated plant growth. Additionally, a grafting experiment in tomato confirmed that increasing the Glc uptake capacity in the root overexpressing MdHT1.2 could facilitate carbohydrate partitioning to the fruit. Collectively, our study demonstrated that MdHT1.2 functions on the root epidermis to absorb rhizospheric Glc, which regulates the carbohydrate allocation for plant growth and fruit sugar accumulation.


Assuntos
Malus , Malus/metabolismo , Glucose/metabolismo , Rizosfera , Açúcares/metabolismo , Carbono/metabolismo , Raízes de Plantas/metabolismo
5.
Cell ; 137(1): 123-32, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19345191

RESUMO

Sister chromatid separation is triggered by the separase-catalyzed cleavage of cohesin. This process is temporally controlled by cell-cycle-dependent factors, but its biochemical mechanism and spatial regulation remain poorly understood. We report that cohesin cleavage by human separase requires DNA in a sequence-nonspecific manner. Separase binds to DNA in vitro, but its proteolytic activity, measured by its autocleavage, is not stimulated by DNA. Instead, biochemical characterizations suggest that DNA mediates cohesin cleavage by bridging the interaction between separase and cohesin. In human cells, a fraction of separase localizes to the mitotic chromosome. The importance of the chromosomal DNA in cohesin cleavage is further demonstrated by the observation that the cleavage of the chromosome-associated cohesins is sensitive to nuclease treatment. Our observations explain why chromosome-associated cohesins are specifically cleaved by separase and the soluble cohesins are left intact in anaphase.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , DNA/metabolismo , Endopeptidases/metabolismo , Mitose , Anáfase , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Separase , Coesinas
6.
J Med Genet ; 61(1): 8-17, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37316190

RESUMO

BACKGROUND: Methylmalonic acidemia (MMA), which results from defects in methylmalonyl-CoA mutase (mut type) or its cofactor, is the most common inherited organic acid metabolic disease in China. This study aimed to investigate the phenotype and genotype of mut-type MMA in Chinese patients. METHODS: We recruited 365 patients with mut-type MMA; investigated their disease onset, newborn screening (NBS) status, biochemical metabolite levels, gene variations and prognosis; and explored the relationship between phenotype and genotype. RESULTS: There were 152 patients diagnosed by tandem mass spectrometry (MS/MS) expanded NBS, 209 patients diagnosed because of disease onset without NBS and 4 cases diagnosed because of sibling diagnosis. The median age of onset was 15 days old, with a variety of symptoms without specificity. Urinary levels of methylmalonic acid and methylcitric acid (MCA) decreased after treatment. Regarding the prognosis, among the 152 patients with NBS, 50.6% were healthy, 30.3% had neurocognitive impairment and/or movement disorders and 13.8% died. Among the 209 patients without NBS, 15.3% were healthy, 45.9% had neurocognitive impairment and/or movement disorders and 33.0% died. In total, 179 variants were detected in the MMUT gene, including 52 novel variations. c.729_730insTT, c.1106G>A, c.323G>A, c.914T>C and c.1663G>A were the five most frequent variations. The c.1663G>A variation led to a milder phenotype and better prognosis. CONCLUSION: There is a wide spectrum of variations in the MMUT gene with several common variations. Although the overall prognosis of mut-type MMA was poor, participation in MS/MS expanded NBS, vitamin B12 responsive and late onset are favourable factors for the prognosis.


Assuntos
Transtornos dos Movimentos , Espectrometria de Massas em Tandem , Recém-Nascido , Humanos , Mutação , Genótipo , China/epidemiologia
7.
J Enzyme Inhib Med Chem ; 39(1): 2315227, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38421003

RESUMO

Pterostilbene (PST) is a naturally derived stilbene compound in grapes, blueberries, and other fruits. It is also a natural dietary compound with a wide range of biological activities such as antioxidant, anti-inflammatory, antitumor, and so on. Structural modifications based on the chemical scaffold of the pterostilbene skeleton are of great importance for drug discovery. In this study, pterostilbene skeletons were used to design novel anti-inflammatory compounds with high activity and low toxicity. A total of 30 new were found and synthesised, and their anti-inflammatory activity and safety were screened. Among them, compound E2 was the most active (against NO: IC50 = 0.7 µM) than celecoxib. Further studies showed that compound E2 exerted anti-inflammatory activity by blocking LPS-induced NF-κB/MAPK signalling pathway activation. In vivo experiments revealed that compound E2 had a good alleviating effect on acute colitis in mice. In conclusion, compound E2 may be a promising anti-inflammatory lead compound.


Assuntos
Transdução de Sinais , Estilbenos , Camundongos , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Estilbenos/farmacologia , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia
8.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255838

RESUMO

Cadmium (Cd) is a common environmental pollutant and occupational toxicant that seriously affects various mammalian organs, especially the kidney. Iron ion is an essential trace element in the body, and the disorder of iron metabolism is involved in the development of multiple pathological processes. An iron overload can induce a new type of cell death, defined as ferroptosis. However, whether iron metabolism is abnormal in Cd-induced nephrotoxicity and the role of ferroptosis in Cd-induced nephrotoxicity need to be further elucidated. Sprague Dawley male rats were randomly assigned into three groups: a control group, a 50 mg/L CdCl2-treated group, and a 75 mg/L CdCl2-treated group by drinking water for 1 month and 6 months, respectively. The results showed that Cd could induce renal histopathological abnormalities and dysfunction, disrupt the mitochondria's ultrastructure, and increase the ROS and MDA content. Next, Cd exposure caused GSH/GPX4 axis blockade, increased FTH1 and COX2 expression, decreased ACSL4 expression, and significantly decreased the iron content in proximal tubular cells or kidney tissues. Further study showed that the expression of iron absorption-related genes SLC11A2, CUBN, LRP2, SLC39A14, and SLC39A8 decreased in proximal tubular cells or kidneys after Cd exposure, while TFRC and iron export-related gene SLC40A1 did not change significantly. Moreover, Cd exposure increased SLC11A2 gene expression and decreased SLC40A1 gene expression in the duodenum. Finally, NAC or Fer-1 partially alleviated Cd-induced proximal tubular cell damage, while DFO and Erastin further aggravated Cd-induced cell damage. In conclusion, our results indicated that Cd could cause iron deficiency and chronic kidney injury by interfering with the iron metabolism rather than typical ferroptosis. Our findings suggest that an abnormal iron metabolism may contribute to Cd-induced nephrotoxicity, providing a novel approach to preventing kidney disease in clinical practice.


Assuntos
Cádmio , Deficiências de Ferro , Anormalidades Urogenitais , Masculino , Ratos , Animais , Cádmio/toxicidade , Cloreto de Cádmio , Ratos Sprague-Dawley , Rim , Ferro , Mamíferos
9.
J Sci Food Agric ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877786

RESUMO

BACKGROUND: Dandelion contains hundreds of active compounds capable of inhibiting urease activity, but the individual compounds have not yet been fully identified, and their effects and underlying mechanisms are not clear. The present study aimed to screen the urease inhibition active compounds of dandelion by urease inhibitory activity evaluation HPLC-tandem mass spectrometry analysis, their mechanism of urease inhibition by polyphenols was explored using enzyme kinetic studies via Lineweaver-Burk plots. Other investigations included isothermal titration calorimetry and surface plasmon resonance sensing, fluorescence quenching experiments, and single ligand molecular docking and two-ligand simultaneous docking techniques. RESULTS: The results indicated that the ethyl acetate fraction of dandelion flower exhibited the greatest inhibition (lowest IC50 0.184 ± 0.007 mg mL-1). Chlorogenic acid, caffeic acid and luteolin could be effective urease inhibitors that acted in a non-competitive inhibition manner. Individually, chlorogenic acid could not only fast bind to urease, but also dissociate rapidly, whereas luteolin might interact with urease with the weakest affinity. The chlorogenic acid-caffeic acid combination exhibited an additive effect in urease inhibition. However, the chlorogenic acid-luteolin and caffeic acid-luteolin combinations exhibited antagonistic effects, with the caffeic acid-luteolin combination showing greater antagonism. CONCLUSION: The present study reveals that chlorogenic acid, caffeic acid and luteolin are major bioactive compounds for urease inhibition, indicating the molecular mechanisms. The antagonistic effects were observed between luteolin and chlorogenic acid/caffeic acid, and the interactions of the catalytic site and flap may account for the antagonistic effects. © 2024 Society of Chemical Industry.

10.
Macromol Rapid Commun ; 44(15): e2300159, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37159536

RESUMO

In this work, π-conjugated block copolymers consisting of poly(phenyl isocyanide) (PPI) and polyfluorene (PF) segments are facilely prepared by one-pot sequential polymerization of phenyl isocyanide (monomer 1) and 7-bromo-9,9-dioctylfluorene-2-boronic acid pinacol ester (monomer 2). The Pd(II)-terminated PPI is first prepared via polymerizing monomer 1 catalyzed with phenyl alkyne-Pd(II) complex and then utilized to initiate the controlled Suzuki cross-coupling polymerization of monomer 2, yielding various PPI-b-PF copolymers possessing controlled molar mass and narrow dispersity. Owing to the helical conformation of PPI segment and π-conjugated structure of PF segment, PPI-b-PF copolymers present distinctive optical property and fascinating chiral self-assembly behavior. During the self-assembly process, chirality transfer from helical PPI block to the supramolecular aggregates of helical nanofibers occurs to afford optically active helical nanofibers with high optical activity. Furthermore, the self-assembled helical nanofibers exhibit excellent circularly polarized luminescence performance.


Assuntos
Cianetos , Luminescência , Cianetos/química , Polímeros/química , Conformação Molecular , Polimerização
11.
Phys Chem Chem Phys ; 25(44): 30145-30171, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37916298

RESUMO

Metamaterials are a kind of artificial material with special properties, showing huge potential for applications in fields such as infrared measurement, solar cells, optical sensors, and optical stealth. A metamaterial perfect absorber (MPA) is designed based on a metamaterial, featuring strong absorption, small volume, light weight, ultra-bandwidth, tunability and other characteristics. This paper introduces the absorption mechanism of MPAs from microwave to optical wave band, and four directions of absorber design are elaborated. Equivalent impedance matching, plasma resonance and interference effect are the main absorption mechanisms of MPA. Multiband perfect absorption, ultra-wideband and ultra-narrowband perfect absorption, polarization and angle insensitive absorption, and dynamically controllable tunable absorption are the main design aspects. Among them, the proposal of a dynamically tunable absorber realizes the dynamic absorption. Finally, the problems and challenges of metamaterial perfect absorber design are discussed.

12.
Cell Mol Biol Lett ; 28(1): 87, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37884867

RESUMO

Mitochondrial transfer regulates intercellular communication, and mitochondria regulate cell metabolism and cell survival. However, the role and mechanism of mitochondrial transfer in Cd-induced nonalcoholic fatty liver disease (NAFLD) are unclear. The present study shows that mitochondria can be transferred between hepatocytes via microtubule-dependent tunneling nanotubes. After Cd treatment, mitochondria exhibit perinuclear aggregation in hepatocytes and blocked intercellular mitochondrial transfer. The different movement directions of mitochondria depend on their interaction with different motor proteins. The results show that Cd destroys the mitochondria-kinesin interaction, thus inhibiting mitochondrial transfer. Moreover, Cd increases the interaction of P62 with Dynactin1, promotes negative mitochondrial transport, and increases intracellular lipid accumulation. Mitochondria and hepatocyte co-culture significantly reduced Cd damage to hepatocytes and lipid accumulation. Thus, Cd blocks intercellular mitochondrial transfer by disrupting the microtubule system, inhibiting mitochondrial positive transport, and promoting their negative transport, thereby promoting the development of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Cádmio , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Hepatócitos/metabolismo , Lipídeos , Fígado
13.
Ecotoxicol Environ Saf ; 267: 115674, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952295

RESUMO

The incidence of diabetes mellitus (DM) is gradually increasing, making it a widespread global health concern. Cadmium (Cd) is a common toxic heavy metal in the environment, and cadmium exposure may be associated with diabetic nephropathy (DN). However, the mechanism of Cd-induced DN remains unclear. In this study, we aimed to determine the effect of cadmium on diabetic kidney injury and the underlying mechanism in diabetic rats and a renal tubular epithelial cell line (NRK-52E cells). Our results could provide novel insights on the nephrotoxic mechanism of cadmium. HE, PAS, and Masson staining were used to observe pathological renal injury. COL-I, COL-IV, CTSB, and CTSD protein levels were detected by immunohistochemistry and western blotting. Immunofluorescence was used to detect the fluorescence intensity of p62 and LC3 proteins in kidney tissue. TEM was used to observe the ultrastructure of mitochondria and number of autophagosomes. After cadmium exposure, DM rats showed a dramatic decrease in body weight compared to the unexposed DM group. Relative kidney weight showed a contrasting trend after cadmium exposure. Urinary microalbumin/creatinine significantly increased in normal and DM rats after cadmium exposure. However, the trend was clearer in the DM groups than in the control groups. Endogenous creatinine clearance exhibited a contrasting trend. After cadmium exposure in DM rats, MDA content significantly increased and GSH, CAT, SOD, and GSH-PX activation reduced compared to normal controls. Pathological damage was more pronounced, and the expression of autophagy related proteins and apoptosis and fibrosis proteins was significantly higher in vivo and vitro in the cadmium-exposed groups than in unexposed controls. Further, lysosomal protein levels were lower, and ROS content and autophagosome count significantly higher in the cadmium exposed groups compared to the unexposed controls. Therefore, Cadmium exposure aggravates diabetic kidney injury via autophagy inhibition.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Ratos , Cádmio/toxicidade , Creatinina , Autofagia , Rim
14.
Ecotoxicol Environ Saf ; 249: 114465, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38321684

RESUMO

Cadmium (Cd) is a heavy metal pollutant in the environment, and the kidney is one of the target organs after Cd exposure. Previous studies have shown that apoptosis and autophagy disorders are the main mechanisms of Cd-induced nephrotoxicity in rats. As a transcription factor that balances cell survival and death, nuclear factor-kappaB (NF-κB) protein plays dual regulatory effects on apoptosis and autophagy in multiple renal diseases. However, the regulatory mechanisms of NF-κB in Cd-induced kidney injury remain unclear. Therefore, the normal rat kidney cell line (NRK-52E cells) was applied to investigate the above questions in this study. Here, we found that Cd promotes the nuclear translocation and activation of NF-κB in a concentration-dependent manner, and activated NF-κB mediates NRK-52E cells survival after Cd exposure. Next, our study elaborated the mechanisms of NF-κB in antagonizing Cd-induced renal cytotoxicity. Inhibition of NF-κB by inhibitor BAY 11-7082 (BAY) and NF-κB p65 siRNA (siNF-κB p65) exacerbate Cd-induced apoptosis and autophagy inhibition, and then aggravate Cd-induced NRK-52E cells injury. Activation of NF-κB by activator phorbol-12-myristate-13-acetate (PMA) alleviates Cd-induced apoptosis and autophagy inhibition, and then attenuates Cd-induced NRK-52E cells injury. In conclusion, Cd exposure promotes the activation of NF-κB, and activated NF-κB mediates the survival of NRK-52E cells after Cd exposure via promoting autophagy and inhibiting apoptosis.


Assuntos
Cádmio , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Cádmio/toxicidade , Rim , Apoptose , Autofagia
15.
Environ Toxicol ; 38(2): 278-288, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36288102

RESUMO

Zearalenone (ZEA), a common mycotoxin in animal feed, is harmful to public health and causes huge economic losses. The potential target proteins of ZEA and its derivatives were screened using the PharmMapper database and the related genes (proteins) of the testis were obtained from Genecards. We obtained 144 potential targets of ZEA and its derivatives related to the testis using Venn diagrams. The PPI analysis showed that ZEA had the most targets in testis, followed by ZAN, α-ZAL, ß-ZEL, α-ZEL, and ß-ZAL. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses evaluated the metabolic and cancer pathways. We further screened four hub genes: RAC3, CCND1, EP300, and CTNNB1. Eight key biological processes were obtained by GO analysis, and four important pathways were identified by KEGG analysis. Animal and cell experimental results confirmed that ZEA could inhibit the expression of four key KEGG pathway protein components and four hub proteins that interfere with cell adhesion by inhibiting the focal adhesion structure of the testis, Leydig cells, and Sertoli cells. Collectively, our findings reveal that the destruction of the focal adhesion structure in the testis is the mechanism through which ZEA damages the male reproductive system.


Assuntos
Adesões Focais , Testículo , Zearalenona , Animais , Masculino , Ratos , Adesões Focais/efeitos dos fármacos , Adesões Focais/patologia , Células Intersticiais do Testículo/metabolismo , Micotoxinas/efeitos adversos , Micotoxinas/toxicidade , Testículo/efeitos dos fármacos , Testículo/patologia , Zearalenona/efeitos adversos , Zearalenona/toxicidade
16.
Environ Toxicol ; 38(12): 2881-2893, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37555767

RESUMO

The potential impact of the combination of a high-fat diet (HFD) and polystyrene nanoplastics (PS-NPs) on fertility cannot be ignored, especially when the fertility rate is declining. However, it has not attracted considerable attention. In this study, an obese mouse model was established using an HFD, and the reproductive function of male mice was evaluated after intragastric administration of 100 µL of a 10 mg/mL PS-NP suspension for 4 weeks. By determining the morphology and vitality of sperm and related indicators of testosterone production, it was found that PS-NPs aggravated the destruction of sperm mitochondrial structure, decrease sperm activity, and testosterone production in HFD-fed mice. To comprehensively analyze the injury mechanism, the integrity of the blood testicular barrier (BTB) and the function of Leydig and Sertoli cells were further analyzed. It was found that PS-NPs could destroy BTB, promote the degeneration of Leydig cells, reduce the number of Sertoli cells, and decrease lactate secretion in HFD-fed mice. PS-NPs further interfered with redox homeostasis in the testicular tissues of HFD-fed mice. This study found that PS-NPs could aggravate the damage to the reproductive system of obese male mice by further perturbing its redox homeostasis and revealed the potential health risk of PS-NPs exposure under an HFD.


Assuntos
Poliestirenos , Testículo , Masculino , Camundongos , Animais , Testículo/metabolismo , Poliestirenos/toxicidade , Camundongos Obesos , Microplásticos , Sêmen , Obesidade/metabolismo , Testosterona/metabolismo , Oxirredução
17.
Environ Toxicol ; 38(4): 743-753, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36527706

RESUMO

Cadmium is a widespread environmental contaminant and its neurotoxicity has raised serious concerns. Mitochondrial dysfunction is a key event in Cd-induced nervous system disease; however, the exact molecular mechanism involved has not been fully elucidated. Increasing evidences have shown that Sirtuin 1 (SIRT1) is the key target protein impaired in Cd-induced mitochondrial dysfunction. In this study, the role of SIRT1 in Cd-induced mitochondrial dysfunction and cell death and the underlying mechanisms were evaluated in vitro using PC12 cells and primary rat cerebral cortical neurons. The results showed that Cd exposure caused cell death by inhibiting SIRT1 expression, thus inducing oxidative stress and mitochondrial dysfunction in vitro. However, inhibition of oxidative stress by the antioxidant puerarin alleviated Cd-induced mitochondrial dysfunction. Furthermore, activation of SIRT1 using the agonist Srt1720 significantly abolished Cd-induced oxidative stress and mitochondrial dysfunction and ultimately alleviated Cd-induced neuronal cell death. Collectively, our data indicate that Cd induced mitochondrial dysfunction via SIRT1 suppression-mediated oxidative stress, leading to the death of PC12 cells and primary rat cerebral cortical neurons. These findings suggest a novel mechanism for Cd-induced neurotoxicity.


Assuntos
Cádmio , Sirtuína 1 , Ratos , Animais , Cádmio/toxicidade , Sirtuína 1/metabolismo , Estresse Oxidativo , Neurônios/metabolismo , Mitocôndrias/metabolismo
18.
Environ Toxicol ; 38(8): 1775-1785, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37022104

RESUMO

Cadmium (Cd) is an environmental heavy metal, and its accumulation is harmful to animal and human health. The cytotoxicity of Cd includes oxidative stress, apoptosis, and mitochondrial histopathological changes. Furthermore, polystyrene (PS) is a kind of microplastic piece derived from biotic and abiotic weathering courses, and has toxicity in various aspects. However, the potential mechanism of action of Cd co-treated with PS is still poorly unclear. The objective of this study was to investigate the effects of PS on Cd-induced histopathological injury of mitochondria in the lung of mice. In this study, the results have showed that Cd could induce the activity of oxidative enzymes of the lung cells in mice, increasing the content of partial microelement and the phosphorylation of inflammatory factor NF-κB p65. Cd further destroys the integrity of mitochondria by increasing the expression of apoptotic protein and blocking the autophagy. In addition, PS solely group aggravated the lung damage in mice, especially mitochondrial toxicity, and played a synergistic effect with Cd in lung injury. However, how PS can augment mitochondrial damage and synergism with Cd in lung of mice requiring further exploration. Therefore, PS was able to exacerbate Cd-induced mitochondrial damage to the lung in mice by blocking autophagy, and was associated with the apoptosis.


Assuntos
Cádmio , Poliestirenos , Humanos , Camundongos , Animais , Cádmio/toxicidade , Poliestirenos/toxicidade , Plásticos/farmacologia , Autofagia , Estresse Oxidativo , Apoptose , Pulmão
19.
Environ Toxicol ; 38(8): 1980-1988, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37148155

RESUMO

Cadmium (Cd) can damage bone cells and cause osteoporosis. Osteocytes are the most numerous bone cells and also important target cells for Cd-induced osteotoxic damage. Autophagy plays important role in the progression of osteoporosis. However, osteocyte autophagy in Cd-induced bone injury is not well characterized. Thus, we established a Cd-induced bone injury model in BALB/c mice and a cellular damage model in MLO-Y4 cells. Aqueous Cd exposure for 16 months showed an increase in plasma alkaline phosphatase (ALP) activity and increase in urine calcium (Ca) and phosphorus (P) concentrations in vivo. Moreover, expression level of autophagy-related microtubule-associated protein 1A/1B-light chain 3 II (LC3II) and autophagy-related 5 (ATG5) proteins were induced, and the expression of sequestosome-1 (p62) was reduced, along with Cd-induced trabecular bone damage. In addition, Cd inhibited the phosphorylation of mammalian target of rapamycin (mTOR), protein kinase B (AKT), and phosphatidylinositol 3-kinase (PI3K). In vitro, 80 µM Cd concentrations exposure upregulated LC3II protein expression, and downregulated of p62 protein expression. Similarly, we found that treatment with 80 µM Cd resulted in a reduction in the phosphorylation levels of mTOR, AKT, and PI3K. Further experiments revealed that addition of rapamycin, an autophagy inducer, enhanced autophagy and alleviated the Cd-induced damage to MLO-Y4 cells. The findings of our study reveal for the first time that Cd causes damage to both bone and osteocytes, as well as induces autophagy in osteocytes and inhibits PI3K/AKT/mTOR signaling, which could be a protective mechanism against Cd-induced bone injury.


Assuntos
Osteoporose , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Cádmio/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Osteócitos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Sirolimo/farmacologia , Mamíferos/metabolismo
20.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675029

RESUMO

Osteoprotegerin (OPG) is a new member of the tumor necrosis factor (TNF) receptor superfamily, which can inhibit the differentiation and activity of osteoclasts by binding to nuclear factor kappa B receptor activator (RANK) competitively with nuclear factor kappa B receptor activator ligand (RANKL). The previous experiments found that OPG can induce apoptosis of mature osteoclasts in vitro, which can inhibit the activity of mature osteoclasts, thereby exerting its role in protecting bone tissue. In addition, pyroptosis is a new type of cell death that is different from apoptosis. It is unclear whether OPG can induce mature osteoclast pyroptosis and thereby play its role in protecting bone tissue. In this study, the results showed that compared with the control group, the survival rate of osteoclasts in the OPG group was significantly reduced, and the contents of IL-1ß, IL-18, and LDH in the supernatant both increased. Many osteoclast plasma membranes were observed to rupture in bright fields, and OPG induced loss of their morphology. Flow cytometry was used to analyze the pyroptosis rate; OPG significantly increased the osteoclast pyroptosis rate. To further reveal the mechanism of OPG-induced osteoclast pyroptosis, we examined the expression level of pyroptosis-related genes and proteins, and the results found that OPG increased the expression of NLRP3, ASC, caspase-1, and GSDMD-N compared with the control group. In summary, OPG can induce osteoclast pyroptosis, and its mechanism is related to the expression levels of ASC, NLRP3, caspase 1 and GSDMD, which were included in the classical pathway of pyroptosis.


Assuntos
Osteoclastos , Osteoprotegerina , Osteoclastos/metabolismo , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Glicoproteínas/metabolismo , Glicoproteínas de Membrana/genética , NF-kappa B/metabolismo , Piroptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Osteoblastos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ligante RANK/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA