Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mikrochim Acta ; 190(12): 478, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37993700

RESUMO

A dual-mode pH sensor based on nitrogen-doped carbon dots (N-CDs) with the source of o-phenylenediamine and tryptophan has been constructed. Under the stimulation of pH, the N-CDs exhibited prominent both color and fluorescence changes, leading to the rarely discovered colorimetric and fluorescent dual-readouts for the evaluation of pH. The mathematic relationship was established between pH and fluorescence intensity of N-CDs, and between pH and the UV-Vis absorbance ratio at 630 nm and 488 nm of N-CDs, respectively, over a quite broad pH range of 2.2 to 12.0. Multiple techniques are used to explore the dual-mode pH-responsive mechanism, and the preliminary explanation is put forward. The experimental results show that the N-CDs have visualized pH sensing applicability for actual samples, including various water samples and HeLa cell. Furthermore, the N-CD ink is developed for successful information encryption and anti-counterfeiting. This work might provide valuable insights into the sensing mechanism of CDs, and the application potential of CDs in broader fields.

2.
Anal Chem ; 92(15): 10375-10380, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32527079

RESUMO

Artificial bases have emerged as a useful tool to expand genetic alphabets and biomedical applications of oligonucleotides. Herein, we reported that the conformation conversion enhances cellular uptake of hydrophobic 3,5-bis(trifluoromethyl)benzene (F) base double-strand-conjugated oligonucleotides. The formation of the F base double-strand caged the hydrophobic F base in the duplex strand, thus preventing F base from interacting with cells to some extent. However, upon conversion of F base double-strand-conjugated oligonucleotide to F base single-strand-conjugated oligonucleotide, F bases then were allowed to interact with cells by stronger hydrophobic interactions, followed by cellular uptake. The results were concluded as a pairing-induced cage effect of F base and have the potential for the construction of stimuli-responsive cellular uptake of functional nucleic acids.


Assuntos
Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Transporte Biológico , Configuração de Carboidratos , Células HeLa , Humanos , Estrutura Molecular , Compostos Organofosforados/síntese química , Compostos Organofosforados/química
3.
J Am Chem Soc ; 141(10): 4282-4290, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30730715

RESUMO

In this article, we used an artificial DNA base to manipulate the formation of DNA nanoflowers (NFs) to easily control their sizes and functionalities. Nanoflowers have been reported as the noncanonical self-assembly of multifunctional DNA nanostructures, assembled from long DNA building blocks generated by rolling circle replication (RCR). They could be incorporated with myriad functional moieties. However, the efficacy of these DNA NFs as potential nanocarriers delivering cargo in biomedicine is limited by the bioavailability and therapeutic efficacy of their cargo. Here we report the incorporation of metal-containing artificial analogues into DNA strands to control the size and the functions of NFs. We have engineered bioinspired, size-controllable, self-degradable cancer-targeting DNA nanoflowers (Sgc8-NFs-Fc) via the incorporation of an artificial sandwich base. More specifically, the introduction of a ferrocene base not only resulted in the size controllability of Sgc8-NFs-Fc from 1000 to 50 nm but also endowed Sgc8-NFs-Fc with self-degradability in the presence of H2O2 via Fenton's reaction. In vitro experiments confirmed that Sgc8-NFs-Fc/Dox could be selectively taken up by protein tyrosine kinase 7 (PTK7)-positive cancer cells and subsequently cleaved via Fenton's reaction, resulting in rapid release kinetics, nuclear accumulation, and enhanced cytotoxicity of their cargo. In vivo experiments further confirmed that Sgc8-NFs-Fc has good tumor-targeting ability and could significantly improve the therapeutic efficacy of doxorubicin in a xenograft tumor model. On the basis of their tunable size and on-demand drug release kinetics upon H2O2 stimulation, the Sgc8-NFs-Fc nanocarriers possess promising potential in drug delivery.


Assuntos
Antineoplásicos/uso terapêutico , DNA/química , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Animais , Linhagem Celular Tumoral , DNA/síntese química , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Feminino , Compostos Ferrosos/síntese química , Compostos Ferrosos/química , Humanos , Metalocenos/síntese química , Metalocenos/química , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Anal Chem ; 91(3): 2425-2430, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30620179

RESUMO

Exosomes (Exos) are nanoscale natural vehicles for transporting biomolecules to facilitate cell-to-cell communication, indicating a high potential of them for delivering therapeutics/diagnostics. To improve their delivery capacity, a simple, noninvasive, and efficient strategy for functionalizing Exos with effective targeting ligands as well as elucidation of the cellular uptake mechanism of these functionalized Exos was found be to necessary, but remained a challenge. In this work, we used diacyllipid-aptamer conjugates as the targeting ligand to develop an aptamer-functionalized Exos (Apt-Exos) nanoplatform for cell type-specific delivery of molecular therapeutics. The cellular uptake mechanism of Apt-Exos was investigated in details, and distinct behavior was observed in comparison to free Exos. By combining the excellent molecular recognition capability of aptamers and the superiority of Exos as natural vehicles, Apt-Exos can efficiently deliver molecular drugs/fluorophores to target cancer cells, providing a promising delivery platform for cancer theranostics.


Assuntos
Antineoplásicos/farmacologia , Aptâmeros de Nucleotídeos/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Exossomos/química , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/toxicidade , Linhagem Celular Tumoral , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Eletroporação , Endocitose/fisiologia , Exossomos/metabolismo , Humanos , Cinética , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Fosfolipídeos/toxicidade , Estudo de Prova de Conceito
5.
Anal Chem ; 90(11): 6843-6850, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29770690

RESUMO

Creating new functional building blocks that expand the versatility of nanostructures depends on bottom-up self-assembly of amphiphilic biomolecules. Inspired by the unique physicochemical properties of hydrophobic perfluorocarbons, coupled with the powerful functions of nucleic acids, we herein report the synthesis of a series of diperfluorodecyl-DNA conjugates (PF-DNA) which can efficiently self-assemble into micelles in aqueous solution. On the basis of the micelle structure, both target binding affinity and enzymatic resistance of the DNA probe can be enhanced. In addition, based on the hydrophobic effect, the PF-DNA micelles (PFDM) can actively anchor onto the cell membrane, offering a promising tool for cell-surface engineering. Finally, the PFDM can enter cells, which is significant for designing carriers for intracellular delivery. The combined advantages of the DNA micelle structure and the unique physicochemical properties of perfluorocarbons make these PFDM promising for applications in bioimaging and biomedicine.


Assuntos
DNA/química , Fluorocarbonos/química , DNA/síntese química , Fluorocarbonos/síntese química , Halogenação , Micelas , Estrutura Molecular
6.
Angew Chem Int Ed Engl ; 57(29): 8994-8997, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-29923269

RESUMO

Automated attachment of chemotherapeutic drugs to oligonucleotides through phosphoramidite chemistry and DNA synthesis has emerged as a powerful technology in constructing structure-defined and payload-tunable oligonucleotide-drug conjugates. In practice, however, in vivo delivery of these oligonucleotides remains a challenge. Inspired by the systemic transport of hydrophobic payloads by serum albumin in nature, we report the development of a lipid-conjugated floxuridine homomeric oligonucleotide (LFU20) that "hitchhikes" with endogenous serum albumin for cancer chemotherapy. Upon intravenous injection, LFU20 immediately inserts into the hydrophobic cave of albumin to form an LFU20/albumin complex, which accumulates in the tumor by the enhanced permeability and retention (EPR) effect and internalizes into the lysosomes of cancer cells. After degradation, cytotoxic floxuridine monophosphate is released to inhibit cell proliferation.


Assuntos
Antimetabólitos Antineoplásicos/metabolismo , Antimetabólitos Antineoplásicos/farmacocinética , Sistemas de Liberação de Medicamentos , Floxuridina/análogos & derivados , Floxuridina/farmacocinética , Albumina Sérica/metabolismo , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Floxuridina/metabolismo , Floxuridina/uso terapêutico , Interações Hidrofóbicas e Hidrofílicas , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Oligonucleotídeos/metabolismo , Oligonucleotídeos/farmacocinética , Oligonucleotídeos/uso terapêutico , Ligação Proteica
7.
Environ Sci Pollut Res Int ; 31(4): 5116-5131, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38112872

RESUMO

Atrazine, a widely used herbicide in agriculture, is detrimental to both the ecological environment and human health owing to its extensive use, poor degradability, and biotoxicity. The technology commonly used to remove atrazine from water is activated carbon adsorption, but it has the problems of difficult recovery, secondary contamination, and a low removal rate. To efficiently remove atrazine from agricultural wastewater, in this study, a new environmental material, embedding immobilization (EI)-Co- and Zr-modified activated carbon powder (Co/Zr@AC), was prepared by immobilizing the bimetallic Co/Zr@AC via EI technique and employed to remove atrazine. When preparing EI-Co/Zr@AC, the single-factor experiment was conducted and determined the optimal preparation conditions: sodium alginate 2.5% (wt), calcium chloride 4.0% (wt), Co/Zr@AC 1.0% (wt), and bentonite 2.0% (wt). The prepared EI-Co/Zr@AC has a three-dimensional mesh structure and many pores and also possesses good mass transfer performance and mechanical properties. The removal efficiency by EI-Co/Zr@AC for the removal of 5.0 mg/L atrazine from 50 mL was 94.1% at pH 7.0 and 25°C, with an EI-Co/Zr@AC dosage of 0.8 g. The mechanistic study showed that the pseudo-second-order kinetic model could describe the removal process better than the pseudo-first-order kinetic model, and the Freundlich isotherm model fit better than other isotherm models. Additionally, the synthesized EI-Co/Zr@AC spheres demonstrated good reusability, with the atrazine removal rate remaining 70.4% after five cycles, and the mechanical properties of the spheres were stable.


Assuntos
Atrazina , Herbicidas , Poluentes Químicos da Água , Humanos , Atrazina/química , Carvão Vegetal/química , Bentonita , Água/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
8.
Water Res ; 251: 121128, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262163

RESUMO

Adsorptive fractionation of dissolved black carbon (DBC) on minerals is proven to alter its molecular composition, which will inevitably affect the environment fate of heavy metals. However, the effects of molecular fractionation on the interaction between DBC and heavy metals remain unclear. Herein, we observed that the selective adsorption of ferrihydrite caused molecular changes of DBC from high molecular weight/unsaturation/aromaticity to low molecular weight/saturation/aliphatics. This process accompanied by a retention of carbohydrate and a reduction of oxygen-rich functional groups (e.g., polyphenols and carboxyl) and long carbon chain in DBC. The residual DBC in aqueous phase demonstrated a weaker binding affinity to copper compared to the original DBC. This decrease in binding affinity was primarily attributed to the adsorption of polycyclic condensed aromatic compounds of 200-250 Da, oxygen-rich polycyclic condensed aromatic compounds of 250-300 Da, oxygen-rich non-polycyclic aromatic compounds of 300-450 Da, and non-polycyclic aromatic compounds of 450-700 Da in DBC by ferrihydrite. Additionally, the retention of carbohydrates and aliphatic compounds of 300-450 Da also made a significant contribution. Notably, carboxylic groups rather than phenolic groups were the dominant oxygen-containing functional groups responsible for this affinity reduction. This study has significant implications for understanding of the biogeochemical processes of DBC at soil-water interface and surface water, especially its role in the transportation of heavy metals.


Assuntos
Cobre , Compostos Férricos , Metais Pesados , Adsorção , Carbono , Fuligem , Oxigênio , Água
9.
Bioresour Technol ; 400: 130692, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599348

RESUMO

Synthesized allophane was employed in anaerobic digestion of chicken manure to improve the stability and methane production under ammonia inhibition. Adding 0.5 %, 1.0 % and 1.5 % (w/w) allophane increased the methane production by 261 âˆ¼ 350 % compared with the group without allophane addition. Further investigation indicated that the maximum adsorption capacity of allophane for NH4+-N achieved at 261.9 mg/g; it suggested that allophane adsorption potentially alleviated the ammonia inhibition, which also was reflected by the increase in the activity of the related enzyme, such as coenzyme F420. Moreover, allophane addition also intensified the direct interspecies electron transfer (DIET) in anaerobic digestion; it can be well supported by the increased relative abundance of Methanosaeta and Methanosarcina involved in the DIET. Overall, the improved anaerobic digestion via alleviating ammonia inhibition and intensifying DIET by allophane was elucidated comprehensively, which can contribute to the development of a functional additive for efficient anaerobic digestion in practical application.


Assuntos
Amônia , Galinhas , Esterco , Metano , Animais , Amônia/metabolismo , Anaerobiose , Transporte de Elétrons , Metano/metabolismo , Adsorção
10.
RSC Adv ; 14(25): 17491-17497, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38818364

RESUMO

A dual-signal optical sensing platform was successfully developed for the determination of ascorbic acid (AA) based on blue fluorescent carbon dots (CDs) and manganese dioxide nanosheets (MnO2 NSs) with strong Tyndall effect (TE) scattering and fluorescence quenching capabilities. In this nanosystem, CDs-MnO2 NS composites were employed as probes to evaluate the AA concentration. Owing to the strong reduction, the presence of the target AA could reduce the MnO2 NSs to Mn2+ and induce the degradation of the MnO2 NSs, resulting in a significant decrease in the TE scattering intensity of the MnO2 NSs and the fluorescence recovery of the CDs. Therefore, a novel optical sensor based on TE scattering and fluorescence dual detectors was developed for the sensitive determination of AA. Under optimized conditions, the limits of detection (LODs) of the two modes were 113 and 3 nM, respectively. Furthermore, the dual-signal optical sensing platform was successfully applied for the detection of AA in human serum.

11.
Anal Methods ; 15(14): 1819-1825, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36961405

RESUMO

A novel nanozyme of bimetallic (Ni/Co) metal-organic framework (Ni/Co-MOF) was synthesized using a simultaneous precipitation and acid etching method with a zeolitic imidazolate framework ZIF-67 as the template. The as-synthesized Ni/Co-MOF catalyst presented a three-dimensional hollow nanocage structure and exhibited excellent intrinsic oxidase-like activity. It was demonstrated that Ni/Co-MOF could directly catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue product (oxidized TMB, oxTMB) in the absence of H2O2. The mechanisms and kinetics of this nanozyme activity were investigated, and it was determined that the catalytic activity of Ni/Co-MOF was closely related to temperature and solution pH. Owing to its strong reducibility, ascorbic acid (AA) could reduce oxTMB, and the blue color of the reaction mixture faded over time. Therefore, a novel colorimetric platform was constructed to detect AA based on the oxidase-like activity of Ni/Co-MOF. Under optimal conditions, the absorbance of ox-TMB at 652 nm decreased linearly over the 0.015-50 µM AA range with a detection limit of 0.004 µM.


Assuntos
Colorimetria , Estruturas Metalorgânicas/química , Níquel/química , Cobalto/química , Colorimetria/métodos , Oxirredutases/metabolismo , Ácido Ascórbico/química
12.
ChemistryOpen ; 11(10): e202200141, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36264016

RESUMO

Aptamers are a class of single-stranded DNA or RNA oligonucleotides that can exclusively bind to various targets with high affinity and selectivity. Regarded as "chemical antibodies", aptamers possess several intrinsic advantages, including easy synthesis, convenient modification, high programmability, and good biocompatibility. In recent decades, many studies have demonstrated the superiority of aptamers as molecular tools for various biological applications, particularly in the area of cancer theranostics. In this review, we focus on recent progress in developing aptamer-based strategies for the precise analysis and treatment of cancer cells.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasia de Células Basais , Neoplasias , Humanos , Técnica de Seleção de Aptâmeros , Aptâmeros de Nucleotídeos/química , DNA de Cadeia Simples , Neoplasias/tratamento farmacológico , RNA
13.
Sci Total Environ ; 853: 158602, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36089049

RESUMO

Hydropower is a source of climate-friendly energy; however, its ecological impacts have been criticized. Few studies have considered the greenhouse gas (GHG) emissions resulting from ecosystem restoration. This study proposes a techno-ecological synergy framework based on life cycle assessment (LCA) to evaluate 34 hydropower plants (HPs) in the upper reaches of the Yangtze River from GHG supply and demand side perspectives. Our results show that the demand unit carbon footprint of the 34 HPs ranged from 5.43 to 49.36 g CO2-eq/kWh, while the imputed GHG emissions from ecosystem restoration occupied 1.22 % to 30.35 %. The unit carbon footprint of large HPs were larger than those of small HPs, and both were positively correlated with the installed capacity of the HPs. All the HPs were unsustainable at the local scale and relied on regional ecosystem supplies. The Sobol' sensitivity analysis and Monte Carlo simulations demonstrated the reliability of our results. Finally, our results were used to consider the related policy implications.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Efeito Estufa , Dióxido de Carbono/análise , Ecossistema , Reprodutibilidade dos Testes , Pegada de Carbono
14.
Bioresour Technol ; 355: 127231, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35483531

RESUMO

To reduce the feedstock-sourced heterogeneity of biochar, mushrooms, cultivated from lignocellulosic feedstocks (LFs), were used as precursors for biochar preparation. The coefficient of variation (CV) was adopted to show the homogeneity changes. In contrast to LFs, mushrooms produced relatively lower CVs in terms of elemental and proximate analysis. Furthermore, the CV of H/C (9.20%) and O/C (13.32%) of mushroom-based biochars (MRBCs) was lower than that of LF-based biochars (LFBCs), suggesting more homogeneous aromaticity and hydrophilicity. The relatively lower CV of the volatile matter (0.87%), fixed carbon (0.45%), and ash (2.44%) of MRBCs suggested an improvement in the homogeneity of chemical components. The homogenized physical structure was reflected in the lack of a difference in pore characteristics of MRBCs. The lower CVs (1.89-14.82%) for the pollutant adsorption of MRBCs, implied more stable performance. In conclusion, converting LFs to mushrooms reduced the precursor's heterogeneity, consequently homogenizing the biochar's properties and performance.


Assuntos
Agaricales , Adsorção , Carvão Vegetal/química , Lignina
15.
Sci Total Environ ; 842: 156905, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753495

RESUMO

To improve the electrochemical properties of lignocellulose-derived carbon, wheat straw was hydrothermally processed at different temperatures followed by KOH activation for the preparation of porous carbons. Their physical, chemical, and electrochemical properties were analyzed to clarify the effects of hydrothermal processing. The results indicated that high-temperature hydrothermal processing fragmented the wheat straw and increased the heteroatoms content to make the hydrochars more conducive to activation, thereby improving the specific surface area, N-heteroatoms and phenolic hydroxyl groups of activated carbons. A maximum specific surface area of 2034.4 m2 g-1 was achieved by HAC-300 (the activated carbon derived from hydrothermally processed wheat straw at 300 °C) with more N-heteroatoms and phenolic hydroxyl groups. Correspondingly, the excellent electrochemical performance of the three-electrode supercapacitor device assembled by HAC-300 showed a specific capacitance of 286.95 F g-1 at 0.5 A g-1, representing an improvement of 89.5 % over than that of the original wheat straw without hydrothermally processing. Its symmetric supercapacitor also realized a good capacitance retention of 95.8 % after 10,000 cycles at 5 A g-1, suggesting the excellent cycling stability of the porous carbon from the hydrothermally processed wheat straw.


Assuntos
Carvão Vegetal , Triticum , Capacitância Elétrica , Eletrodos , Porosidade
16.
Bioresour Technol ; 361: 127653, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35868469

RESUMO

Anaerobic digestion (AD) of food waste (FW) always confronts the challenges of over-acidification in application. This work evaluated the effectiveness of synthesized allophane, a mineral with desirable physicochemical properties (e.g., high pH buffer and organic matter adsorption capacity, and high porosity and specific surface area), in increasing biogas yield during AD of FW as an additive. Results showed that allophane addition (0 to 10 g total solid (TS)) increased the cumulative biogas yield from 409.69 ± 20.77 mL/g TS to 624.06 ± 6.63 mL/g TS, and methane production from 224.12 ± 9.26 mL/g TS to 391.52 ± 0.87 mL/g TS. Improved AD performance was mainly attributed to mitigating over-acidification during the start-up period, and favoring microbial growth, particularly the acetotrophic methanogen of Methanosarcina, indicating an intensified acetoclastic methanogenic pathway. The findings provided a mechanistic insight into the improved AD performance with allophane addition, and offered a potential strategy to stabilize AD of FW in application.


Assuntos
Alimentos , Eliminação de Resíduos , Anaerobiose , Biocombustíveis , Reatores Biológicos , Metano , Methanosarcina
17.
Sci Total Environ ; 831: 154826, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35341866

RESUMO

Water composite pollution is still a great challenge in the field of water treatment. Especially for microplastic (MP), as an emerging pollutant, its wide distribution in water and persistent eco-environmental influence have received great concerns in recent years. Nevertheless, the removal characteristics and mechanism of conventional coagulation on MP composite pollution is quite insufficient. In this study, the coagulation removal performance and mechanisms of MP (polyethylene, PE) and norfloxacin (NOR) was investigated by polyaluminium chloride (PAC) and anionic polyacrylamide (APAM). Compared with single system, the removal efficiency of PE was significantly improved (>99.0%) under plateau stage in composite system, while the removal efficiency of NOR was slightly decreased to around 42% regardless of the addition of APAM. The scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), zeta potential and One-way analysis of variance (ANOVA) of experimental data were used to explore the coagulation mechanisms. The results demonstrated that the removal of individual PE and NOR was mainly controlled by charge neutralization and sweep flocculation by PAC and APAM, and adsorption by formation of Al-NOR complex, respectively. Importantly, in composite system, the removal of PE was enhanced not only by the stronger charge neutralization but also the adsorption via the formation of PE-NOR-Al complex. Furthermore, the removal efficiency of PE and NOR in neutral and weak alkaline conditions was higher than that in weak acidic or strong alkaline conditions. The presence of metal ions and humic acid had obvious inhibition and promoting effects on the removal efficiency of PE and NOR. This study can provide a new perspective on fundamental understanding in characteristics and mechanisms of MP composite pollutants removed by coagulation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Floculação , Microplásticos , Norfloxacino , Plásticos , Poluentes Químicos da Água/análise , Purificação da Água/métodos
18.
J Hazard Mater ; 424(Pt B): 127517, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34688009

RESUMO

The abundantly released tail-gas from lignocellulose pretreatment with phosphoric acid plus hydrogen peroxide (PHP) was found to accelerate the aging of latex/silicone textural accessories of the pretreatment device. Inspired by this, tail-gas was utilized to control organic pollutants. Methylene blue (MB), as a model pollutant, was rapidly decolorized by the tail-gas, and oxidative degradation was substantially proven by full-wavelength scanning with a UV-visible spectrometer. The tail-gas from six typical lignocellulosic feedstocks produced 68.0-98.3% MB degradation, suggesting its wide feedstock compatibility. Three other dyes, including rhodamine B, methyl orange and malachite green, obtained 97.5-99.5% degradation; moreover, tetracycline, resorcinol and hexachlorobenzene achieved 73.8-93.7% degradation, suggesting a superior pollutant compatibility. In a cytotoxicity assessment, the survival rate of the degraded MB was 103.5% compared with 80.4% for the untreated MB, implying almost no cytotoxicity after MB degradation. Mechanism investigations indicated that the self-exothermic reaction in PHP pretreatment drove the self-generated peroxy acids into tail-gas. Moreover, it heated the pollutant solution and thermally activated peroxy acids as free radicals for efficient pollutant degradation. Here, a brand-new technique for degrading organic pollutants with a "Win-Win-Win" concept was purposed for lignocellulose valorization, pollutant control by waste tail-gas, and biofuel production.


Assuntos
Poluentes Ambientais , Peróxido de Hidrogênio , Lignina , Ácidos Fosfóricos/toxicidade
19.
RSC Adv ; 11(30): 18322-18325, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35480953

RESUMO

In this work, phosphorylated lipid-conjugated oligonucleotide (DNA-lipid-P) has been synthesized to develop an enzyme-responsive self-assembly of DNA amphiphiles based on dephosphorylation-induced increase of hydrophobicity. Since elevated ALP level is a critical index in some diseases, ALP-triggered self-assembly of DNA amphiphiles shows promise in disease diagnosis and cancer treatment.

20.
RSC Adv ; 11(58): 36859-36865, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35494369

RESUMO

This work describes a new nanosensor for the simple, rapid, portable, colorimetric analysis of mercury(ii) (Hg2+) ions by combining the sensitive Tyndall effect (TE) of colloidal Au nanoparticles (AuNPs) with specific thymine-Hg2+-thymine (T-Hg2+-T) coordination chemistry for the first time. For the TE-inspired assay (TEA), in the presence of Hg2+ in a sample, the analyte can selectively mediate the hybridization of three types of flexible single-stranded DNAs (ssDNAs) to form stable rigid double-stranded DNAs (dsDNAs) via the T-Hg2+-T ligand interaction. Subsequent self-assembly of the dsDNAs with terminal thiol groups on the AuNPs' surfaces led to their "double" aggregation in addition to the lack of sufficient ssDNAs as the stabilizing molecules in a high-salt solution, resulting in a remarkably enhanced TE signal that positively relied on the Hg2+ level. The results demonstrated that such a TEA method enabled rapid naked-eye qualitative analysis of 625 nM Hg2+ within 10 min with an inexpensive laser pointer pen as an inexpensive handheld light source to generate the TE response. Making use of a smartphone for portable TE readout could further quantitatively detect the Hg2+ ions in a linear concentration range from 156 to 2500 nM with a limit of detection as low as 25 nM. Moreover, the developed equipment-free nanosensor was also used to analyze the Hg2+ ions in real samples including tap water, drinking water, and pond water, the obtained recoveries were within the range of 93.68 to 108.71%. To the best of our knowledge, this is the first report of using the AuNPs and functional nucleic acids to design a TE-based biosensor for the analysis of highly toxic heavy metal ions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA