Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Arch Microbiol ; 199(7): 1003-1009, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28386665

RESUMO

A Gram-negative, non-spore-forming, aerobic rods, strain YIC4121T, was isolated from root nodule of Sesbania cannabina grown in Dongying (Yellow River Delta), Shandong Province, PR China. Based on phylogenetic analysis of 16 S rRNA gene sequences, strain YIC4121T was assigned to the genus Agrobacterium with 99.7, 99.3, 99.0, 98.8 and 98.7% sequence similarities to Agrobacterium radiobacter LMG140T, A. pusense NRCPB10T, A. arsenijevicii KFB 330T, A. nepotum 39/7T and A. larrymoorei ATCC51759T. Analysis of the concatenated housekeeping genes (recA-atpD-glnII), showed lower sequence similarities (≤94.6%) between strain YIC4121T and other recognized Agrobacterium species. Strain YIC4121T shared whole-genome average nucleotide identities (ANI) 87.94, 91.27 and 77.42%, with A. pusense NRCPB10T, A. radiobacter LMG140T and A. larrymoorei ATCC51759T. The predominant cellular fatty acids were C19:0 cyclo ω8c, summed feature 2 (C12:0 aldehyde/unknown 10.9525), summed feature 8 (C18:1 ω7c/C18:1 ω6c), C16:0 3 OH and C16:0. The G + C content of strain YIC4121T was 59.80 mol%. Tween 80, lactulose, citric acid, α-ketoglutaric acid, glycyl-L-glutamic acid and 2, 3-butanediol could not be utilized as carbon source, distinguishing strain YIC4121T from the other related species. Based on the distinctly genetic and phenotypic dissimilarity, a novel species Agrobacterium deltaense sp. nov. is proposed with YIC4121T (=HAMBI 3654T = LMG 29283T) as the type strain.


Assuntos
Agrobacterium , Nódulos Radiculares de Plantas/microbiologia , Sesbania/microbiologia , Agrobacterium/classificação , Agrobacterium/genética , Agrobacterium/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases/genética , China , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes Essenciais/genética , Genoma Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
2.
J Sci Food Agric ; 96(4): 1275-83, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25885969

RESUMO

BACKGROUND: Soil organic carbon (SOC) is fundamental for mitigating climate change as well as improving soil fertility. Databases of SOC obtained from soil surveys in 1981 and 2011 were used to assess SOC change (0-20 cm) in croplands of Heilongjiang Province in northeast China. Three counties (Lindian, Hailun and Baoqing) were selected as typical croplands representing major soil types and land use types in the region. RESULTS: The changes in SOC density (SOCD) between 1981 and 2001 were -6.6, -14.7 and 5.7 Mg C ha(-1) in Lindian, Hailun and Baoqing Counties respectively. The total SOC storage (SOCS) changes were estimated to be -11.3, -19.1 and 16.5% of those in 1981 in the respective counties. The results showed 22-550% increases in SOCS in rice (Oryza sativa L.) paddies in the three counties, but 28-33% decreases in dry cropland in Lindian and Hailun Counties. In addition, an increase of 11.4 Mg C ha(-1) in SOCD was observed in state-owned farms (P < 0.05), whereas no significant change was observed in family-owned farms. CONCLUSION: Soil C:N ratio and initial SOCD related to soil groups were important determinants of SOCD changes. Land use and residue returning greatly affected SOC changes in the study region. To increase the topsoil SOCD, the results suggest the conversion of dry croplands to rice paddies and returning of crop residue to soils.


Assuntos
Carbono/análise , Produtos Agrícolas/crescimento & desenvolvimento , Solo/química , Agricultura/métodos , China , Mudança Climática , Monitoramento Ambiental , Nitrogênio/análise , Oryza/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
3.
Ying Yong Sheng Tai Xue Bao ; 34(4): 883-891, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37078305

RESUMO

We examined the effects of fertile soil layer construction technology on soil fertility and maize yield with a 3-year field experiment in Albic soil in Fujin, Heilongjiang Province. There were five treatments, including conventional tillage (T15, without organic matter return) and fertile soil layer construction methods [deep tillage (0-35 cm) with straw return, T35+S; deep tillage with organic manure, T35+M; deep tillage with straw and organic manure return, T35+S+M; deep tillage with straw, organic manure return and chemical fertilizer, T35+S+M+F]. The results showed that: 1) compared with the T15 treatment, maize yield was significantly increased by 15.4%-50.9% under fertile layer construction treatments. 2) There was no significant difference of soil pH among all treatments in the first two years, but fertile soil layer construction treatments significantly increased soil pH of topsoil (0-15 cm soil layer) in the third year. The pH of subsoil (15-35 cm soil layer) significantly increased under T35+S+M+F, T35+S+M, and T35+M treatments, while no significant difference was observed for T35+S treatment, compared with T15 treatment. 3) The fertile soil layer construction treatments could improve the nutrient contents of the topsoil and subsoil layer, especially in the subsoil layer, with the contents of organic matter, total nitrogen, available phosphorus, alkali-hydrolyzed nitrogen and available potassium being increased by 3.2%-46.6%, 9.1%-51.8%, 17.5%-130.1%, 4.4%-62.8%, 22.2%-68.7% under the subsoil layer, respectively. The fertility richness indices were increased in the subsoil layer, and nutrient contents of the subsoil layer were close to those of topsoil layer, indicating that 0-35 cm fertile soil layer had been constructed. 4) Soil organic matter contents in the 0-35 cm layer were increased by 8.8%-23.2% and 13.2%-30.1% in the second and third years of fertile soil layer construction, respectively. Soil organic carbon storage was also gradually increased under fertile soil layer construction treatments. 5) The carbon conversion rate of organic matter was 9.3%-20.9% under T35+S treatment, and 10.6%-24.6% under T35+M, T35+S+M, and T35+S+M+F treatments. The carbon sequestration rate was 815.7-3066.4 kg·hm-2·a-1 in fertile soil layer construction treatments. The carbon sequestration rate of T35+S treatment increased with experimental periods, and soil carbon content under T35+M, T35+S+M and T35+S+M+F treatments reached saturation point in the experimental second year. Construction of fertile soil layers could improve the fertility of topsoil and subsoil and maize yield. In term of economic benefits, combination application of maize straw, organic material and chemical fertilizer within 0-35 cm soil, cooperating with conservation tillage, is recommended for the Albic soil fertility improvement.


Assuntos
Agricultura , Solo , Solo/química , Agricultura/métodos , Zea mays , Carbono/análise , Fertilizantes , Esterco , Nitrogênio/análise , China
4.
Sci Rep ; 10(1): 14793, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908161

RESUMO

Application of phosphorus (P), a major plant nutrient, as fertilizer is critical to maintain P level for crop production and yield in most cultivated soils. While, it may impact the dynamics, limited studies have examined the long-term effects of fertilization on P fractions in a soil profile in Mollisol. A long-term field experiment was conducted at the State Key Experimental Station of Agroecology of the Chinese Academy of Sciences in Hailun county, Heilongjiang Province, China. A sequential fractionation procedure was used to determine the effect of fertilizer (types) treatments including no fertilizer (CK), chemical fertilizer (NPK), chemical fertilizer plus straw (NPK + S) and pig manure (OM) on fractions of P and their distribution within 0-100 cm soil profiles. Unlike CK treatment, the long-term application of fertilizers increased the concentration and accumulation of total and available P in 0-20 and 0-40 cm soil depths than deeper soils, respectively. The phosphorus activity coefficient (PAC) ranged from 1.5 to 13.8% within 0-100 cm soil depth. The largest PAC value was observed under OM treatment at 0-40 cm soil depth and under NPK + S treatment at 40-100 cm soil depth. The Ca2-P and Ca8-P concentrations increased significantly by 0.5-7.5 times and 0.5-10.4 times, respectively in OM treatment with the largest value in 0-40 cm soil depth over CK treatment. The Al-P concentration under NPK + S and OM treatments increased throughout the soil profile. The OM treatment increased all Po concentrations in the 0-40 cm soil depth, while NPK and NPK + S treatments increased labile organic P, moderately labile organic P, and highly stable organic P in the 0-20 cm soil depth. Thus, the application of fertilizer and straw, or organic manure may enhance inorganic and organic P pool in a Mollisol in Northeast China. Thus, organic manure application in the subsoil as a potential P source and their impact should be considered in developing management practices and policies regarding nutrient management.

5.
Ying Yong Sheng Tai Xue Bao ; 31(12): 4134-4146, 2020 Dec.
Artigo em Zh | MEDLINE | ID: mdl-33393251

RESUMO

Organic amendment return could enhance soil fertility, improve soil structure, and increase crop yield. However, how construction of soil layers can affect soil fertility and crop yield are not fully understood. We examined the effects of constructions of fertile and cultivated soil layer on soil fertility and maize yield in the upland black soil region in Northeast China, to provide theoretical guidance in increasing soil fertility and sustainable development of agriculture. Based on the combination of field plot experiments and demonstration regions, nine study sites with different ecological characteristics were selected from Heilongjiang, Jilin and Liaoning provinces from northeast China, covering dark brown, black, meadow, chernozem, albic, brown and cinnamon soils. There were three treatments in each study site, including maize straw return within 0-35 cm soil layer (CFⅠ), the combination of maize straw and organic manure return within 0-35 cm soil layer (CFⅡ) and conventional agricultural practice without organic amendmentas control (CK). The rate of straw return in CFⅠ and CFⅡ treatments were 10000 kg·hm-2, and full straw for demonstration regions. The rate of organic manure in CFⅡ treatment was 30000 kg·hm-2. Considerable difference in soil fertility were recorded among the nine study sites with the trend of tillage layer > sub-tillage layer, especially for dark brown soil and albic soil. Soil fertility of tillage layer and sub-tillage layer was relatively low both for brown soil and cinnamon soil. The heavy clay and plow pan were pivotal limiting factors of soil fertility for the black soil and the meadow soil. Compared with CK, the concentrations of soil organic matter (SOM), available nitrogen (AN), available phosphorous (AP), and available potassium (AK) in tillage layers was increased on average by 1.85 g·kg-1, 20.16 mg·kg-1, 1.56 mg·kg-1 and 17.2 mg·kg-1 in the CFⅠ and CFⅡ treatments in five study sites with more than two years of treatments. The contents of SOM, AN, AP and AK in sub-tillage layer increased by 2.09 g·kg-1, 12.06 mg·kg-1, 2.18 mg·kg-1 and 3.84 mg·kg-1, compared with tillage layer. CFⅠ treatment significantly enhanced the contents of SOM and AP in both tested soil layers, while CFⅡ treatment significantly enhanced all fertility indices in both tested soil layers. This indicated that the increase of organic amendment return is an effective way to improve soil fertility. Maize yield fluctuated under the combined effect of climatic conditions and soil types. The significant differences in maize yield under CK, CFⅠ and CFⅡ treatments were observed with a trend of CFⅡ > CFⅠ > CK. This result indicated that the construction of fertile and cultivated soil layer could significantly increase maize yield independent of soil types. The construction of fertile and cultivated soil layer based on maize straw return or maize straw and organic manure combined return within 0-35 cm soil layer, could simultaneously increase soil fertility in both tillage and sub-tillage layer, as well as maize yield. We suggested that the selection of approaches of the constructions of fertile and cultivated soil layer should consider soil types and the sources of organic amendments. It should also give priority to soil layers rich in organic manure source to construct fertile and cultivated soil layers.


Assuntos
Solo , Zea mays , Agricultura , China , Humanos
6.
Ying Yong Sheng Tai Xue Bao ; 28(2): 563-570, 2017 Feb.
Artigo em Zh | MEDLINE | ID: mdl-29749165

RESUMO

Tillage and straw incorporation are important agricultural practices that can break plough layer and improve black soil fertility. The effects of tillage and straw incorporation on straw humification coefficient, soil organic carbon (SOC), and maize yield were investigated in a field experiment. Subsoil combined with straw incorporation in 20-35 cm soil layer (ST+S) could break plough layer and decrease the bulk density by 5.7%, 3.3% and 5.7% compared with traditional til-lage (TT), subsoil (ST) and traditional tillage combined with straw incorporation (TT+S) in six experimental years, respectively, and the best effects were observed in ST and ST+S treatments in the first expe-rimental year. The rate of straw decomposition was higher in 0-20 cm (72.0%) than in 20-35 cm (59.2%), and the straw humification coefficient in 0-20 cm and 20-35 cm soil la-yers reached the peak in first experimental year with 15.9% and 12.7%, respectively. Compared with initial soil sample, SOC and light fraction organic carbon (LFOC) of TT, ST and ST+S treatments in 0-20 cm soil layer was decreased in experimental years, but was increased by 2.9% and 12.4% within TT+S, respectively. SOC and light fraction organic carbon (LFOC) of ST+S in 20-35 cm soil layer was increased by 9.2% and 9.9%, respectively. The effect of field treatments on maize yield showed in a decreasing trend of ST+S>TT+S>ST>TT, effects of tillage and straw incorporation on maize yield could continue 3 and 6 years, respectively, indicating that tillage and straw incorporation had time effect. Therefore, straw incorporated into 20-35 cm soil layer based on tillage was an effective, sustainable agricultural practice of improving black soil quality.


Assuntos
Solo , Triticum , Zea mays , Agricultura , Carbono
7.
Ying Yong Sheng Tai Xue Bao ; 26(4): 965-72, 2015 Apr.
Artigo em Zh | MEDLINE | ID: mdl-26259435

RESUMO

Taking soils in a long-term experimental field over 29 years with different land uses types, including arable land, bare land, grassland and larch forest land as test materials, the distribution and storage of soil organic carbon (SOC) in the profile (0-200 cm) in typical black soil (Mollisol) region of China were investigated. The results showed that the most significant differences in SOC content occurred in the 0-10 cm surface soil layer among all soils with the order of grassland > arable land > larch forest land > bare land. SOC contents at 10-120 cm depth were lower in arable land as compared with the other land use types. Compared with arable land, grassland could improve SOC content obviously. SOC content down to a depth of 60 cm in grassland was significantly higher than that in arable land. The content of SOC at 0-10 cm in bare land was significantly lower than that in arable land. Although there were no significant differences in SOC content at 0-20 cm depth between larch forestland and arable land, the SOC contents at 20-140 cm depth were generally higher in larch forestland than that in arable land. In general, SOC content showed a significantly negative relationship with soil pH, bulk density, silt and clay content and an even stronger significantly positive relationship with soil total N content and sand content. The SOC storage in arable land at 0-200 cm depth was significantly lower than that in the other three land use types, which was 13.6%, 11.4% and 10.9% lower than in grassland, bare land and larch forest land, respectively. Therefore, the arable land of black soil has a great potential for sequestering C in soil and improving environmental quality.


Assuntos
Sequestro de Carbono , Carbono/análise , Florestas , Pradaria , Solo/química , China
8.
Ying Yong Sheng Tai Xue Bao ; 20(12): 2996-3002, 2009 Dec.
Artigo em Zh | MEDLINE | ID: mdl-20353068

RESUMO

The clayey farmland soil in black soil region of Northeast China, due to the existence of thicker plough pan created by unreasonable tillage, is a main limiting factor for local agricultural production. In this paper, a field experiment was conducted to study the construction effect of fertile cultivated layer on crop yield, soil physical properties, soil moisture content, and soil microbial number. After the construction of fertile cultivated layer, the soil had a thicker cultivated layer, and the crop yield was increased. Comparing with traditional tillage, applying straw and organic manure into 20-35 cm soil layer decreased soil bulk density by 9.88% and 6.20%, increased soil porosity by 9.58% and 6.02%, and enhanced soil saturated hydraulic conductivity by 167.99 and 73.78%, respectively, indicating that the construction of fertile cultivated layer could improve soil aeration and water permeability, and enhance the infiltration of rainfall. The soil moisture content and water use efficiency under the application of straw and organic manure into plough pan were higher than those under traditional tillage, and a positive correlation was observed between the moisture content in 0-35 cm soil layer and the emergence of maize seedlings. Due to the increased organic carbon source and aeration in the constructed fertile cultivated layer, soil microbial number was also increased.


Assuntos
Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes , Solo/análise , Microbiologia do Solo , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA