Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(2): e17160, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38379454

RESUMO

Unraveling the influence of community assembly processes on soil ecosystem functioning presents a major challenge in the field of theoretical ecology, as it has received limited attention. Here, we used a series of long-term experiments spanning over 25 years to explore the assembly processes of bacterial, fungal, protist, and nematode communities using high-throughput sequencing. We characterized the soil microbial functional potential by the abundance of microbial genes associated with carbon, nitrogen, phosphorus, and sulfur cycling using GeoChip-based functional gene profiling, and determined how the assembly processes of organism groups regulate soil microbial functional potential through community diversity and network stability. Our results indicated that balanced fertilization (NPK) treatment improved the stochastic assembly of bacterial, fungal, and protist communities compared to phosphorus-deficient fertilization (NK) treatment. However, there was a nonsignificant increase in the normalized stochasticity ratio of the nematode community in response to fertilization across sites. Our findings emphasized that soil environmental factors influenced the assembly processes of the biotic community, which regulated soil microbial functional potential through dual mechanisms. One mechanism indicated that the high phosphorus levels and low soil nutrient stoichiometry may increase the stochasticity of bacterial, fungal, and protist communities and the determinism of the nematode community under NPK treatment, ultimately enhancing soil microbial functional potential by reinforcing the network stability of the biotic community. The other mechanism indicated that the low phosphorus levels and high soil nutrient stoichiometry may increase the stochastic process of the bacterial community and the determinism of the fungal, protist, and nematode communities under NK treatment, thereby enhancing soil microbial functional potential by improving the ß-diversity of the biotic community. Taken together, these results provide valuable insights into the mechanisms underlying the assembly processes of the biotic community that regulate ecosystem functioning.


Assuntos
Ecossistema , Solo , Microbiologia do Solo , Bactérias/genética , Fósforo
2.
J Sci Food Agric ; 102(9): 3788-3795, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34921680

RESUMO

BACKGROUND: Diazotrophic bacteria, as one of most important group of soil microorganisms, play critical roles in multiple ecosystem functions (i.e., multifunctionality). However, little information is available about the diazotrophic community in driving soil nutrient cycling and multifunctionality at different depths with distinct vegetation in the black soil region of northeastern China. To learn the interactions among land use, cycling of multiple nutrients and the diazotrophic community, we performed this study in grassland (GL), forested land and a cropland (CL) in soils at depths of 0-15 cm and 15-35 cm. RESULTS: The highest nifH gene abundances were found in the CL treatment, while the highest diazotrophic species richness and diversity were detected in the GL in both soil layers. The nifH gene abundance was directly/positively correlated with soil bulk density and negatively correlated with land use and soil depth. The index of multiple nutrient cycling was directly/negatively affected by soil depth and indirectly/positively affected by land use. Land use directly/negatively affected soil pH and thus indirectly affected the diazotrophic community composition and the nutrient cycling index. The diversity and community composition of the diazotrophs together accounted for 95% of the differences in the multiple nutrient cycling index. CONCLUSION: Soil diazotrophic communities undertake important roles in maintaining nutrient cycling and soil multifunctionality at depths of 0-15 cm and 15-35 cm layers with different land uses of the black soil region of China. © 2021 Society of Chemical Industry.


Assuntos
Microbiologia do Solo , Solo , Ecossistema , Florestas , Nutrientes , Solo/química
3.
J Sci Food Agric ; 101(15): 6338-6346, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33970498

RESUMO

BACKGROUND: Soil- and plant-produced extracellular enzymes drive nutrient cycling in soils and are assumed to regulate supply and demand for carbon (C) and nutrients within the soil. Thus, agriculture management decisions that alter the balance of plant and supplemental nutrients should directly alter extracellular enzyme activities (EEAs), and EEA stoichiometry in predictable ways. We used a 12-year experiment that varyied three major continuous grain crops (wheat, soybean, and maize), each crossed with mineral fertilizer (WCF, SCF and MCF, respectively) or not fertilized (WC, SC and MC, respectively, as controls). In response, we measured the phospholipid fatty acids (PLFAs), EEAs and their stoichiometry to examine the changes to soil microbial nutrient demand under the continuous cropping of crops, which differed with respect to the input of plant litter and fertilizer. RESULTS: Fertilizer generally decreased soil microbial biomass and enzyme activity compared to non-fertilized soil. According to enzyme stoichiometry, microbial nutrient demand was generally C- and phosphorus (P)-limited, but not nitrogen (N)-limited. However, the degree of microbial resource limitation differed among the three crops. The enzymatic C:N ratio was significantly lower by 13.3% and 26.8%, whereas the enzymatic N:P ratio was significantly higher by 9.9% and 42.4%, in MCF than in WCF and SCF, respectively. The abundances of arbuscular mycorrhizal fungi and aerobic PLFAs were significantly higher in MCF than in WCF and SCF. CONCLUSION: These findings are crucial for characterizing enzymatic activities and their stoichiometries that drive microbial metabolism with respect to understanding soil nutrient cycles and environmental conditions and optimizing practices of agricultural management. © 2021 Society of Chemical Industry.


Assuntos
Produtos Agrícolas/metabolismo , Fertilizantes/análise , Microbiologia do Solo , Solo/química , Agricultura , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Carbono/análise , Carbono/metabolismo , China , Nitrogênio/análise , Nitrogênio/metabolismo , Fósforo/análise , Fósforo/metabolismo
4.
J Sci Food Agric ; 101(12): 5056-5066, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33570760

RESUMO

BACKGROUND: The conversion of arable land to grassland and/or forested land is a common strategy of restoration because the development of plant communities can inhibit the erosion of soil, increase biodiversity and improve associated ecosystem services. The vertical profiles of microbial communities, however, have not been well characterized and their variability after land conversion is not well understood. We assessed the effects of the conversion of arable land (AL) to grassland (GL) and forested land (FL) on bacterial communities as old as 29 years in 0-200-cm profiles of a Chinese Mollisol. RESULTS: The soil in AL has been a stable ecosystem and changes in the assembly of soil microbiomes tended to be larger in the topsoil. The soil properties and microbial biodiversity of arable land were larger following revegetation and reforestation. The conversion caused a more complex coupling among microbes, and negative interactions and average connectivity were stronger in the 0-20-cm layers in GL and in the 20-60-cm layers in FL. The land use dramatically influenced the assembly of the microbial communities more in GL than AL and FL. The bacterial diversity was an important component of soil multinutrient cycling in the profiles and microbial functions were not as affected by changes in land use. CONCLUSION: The spatial variation of the microbiomes provided critical information on below-ground soil ecology and the ability of the soil to provide crucial ecosystem services. © 2021 Society of Chemical Industry.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Conservação dos Recursos Naturais , Ecossistema , Florestas , Pradaria , Solo/química
5.
World J Microbiol Biotechnol ; 33(1): 6, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27848139

RESUMO

The influences of five different fertilizer treatments on diversity of rhizobia in soybean nodule were investigated in a long-term experiment with with four replicates: (1) control (without fertilization), (2) balanced NPK fertilizer (NPK), and (3-5) unbalanced chemical fertilizers without one of the major elements (NP, PK, and NK) in Mollisol in Northeast China. The highest soybean yield was observed in the NPK treatment. Total of 200 isolates were isolated and grouped into four Bradyrhizobium genospecies corresponding to B. japonicum, B. diazoefficiens, B. ottawaense and Bradyrhizobium sp. I, based upon the multilocus sequence analysis of 6 housekeeping genes. The Bradyrhizobium sp. I was extensively distributed throughout the study site and was recorded as the dominant soybean rhizobia (82.5-87.5%). Except the NK treatment, the other fertilizer treatments had no effect on rhizobial species composition. Compared with the CK treatment, all the fertilizer treatments decreased species richness, diversity and evenness. The soil organic carbon contents, available N content and pH were the key soil factors to rhizobial community structure. Results suggest that long-term fertilization can decrease rhizobial species diversity, while balanced fertilization with NPK is the most suitable fertilization regime if taking both soybean yields and rhizobial diversity into account.


Assuntos
Bradyrhizobium/classificação , Fertilizantes/análise , Glycine max/crescimento & desenvolvimento , Rhizobium/genética , Biodiversidade , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , Genes Bacterianos , Genes Essenciais , Variação Genética , Tipagem de Sequências Multilocus , Filogenia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Solo/química , Glycine max/microbiologia
6.
J Sci Food Agric ; 96(4): 1275-83, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25885969

RESUMO

BACKGROUND: Soil organic carbon (SOC) is fundamental for mitigating climate change as well as improving soil fertility. Databases of SOC obtained from soil surveys in 1981 and 2011 were used to assess SOC change (0-20 cm) in croplands of Heilongjiang Province in northeast China. Three counties (Lindian, Hailun and Baoqing) were selected as typical croplands representing major soil types and land use types in the region. RESULTS: The changes in SOC density (SOCD) between 1981 and 2001 were -6.6, -14.7 and 5.7 Mg C ha(-1) in Lindian, Hailun and Baoqing Counties respectively. The total SOC storage (SOCS) changes were estimated to be -11.3, -19.1 and 16.5% of those in 1981 in the respective counties. The results showed 22-550% increases in SOCS in rice (Oryza sativa L.) paddies in the three counties, but 28-33% decreases in dry cropland in Lindian and Hailun Counties. In addition, an increase of 11.4 Mg C ha(-1) in SOCD was observed in state-owned farms (P < 0.05), whereas no significant change was observed in family-owned farms. CONCLUSION: Soil C:N ratio and initial SOCD related to soil groups were important determinants of SOCD changes. Land use and residue returning greatly affected SOC changes in the study region. To increase the topsoil SOCD, the results suggest the conversion of dry croplands to rice paddies and returning of crop residue to soils.


Assuntos
Carbono/análise , Produtos Agrícolas/crescimento & desenvolvimento , Solo/química , Agricultura/métodos , China , Mudança Climática , Monitoramento Ambiental , Nitrogênio/análise , Oryza/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
7.
Ying Yong Sheng Tai Xue Bao ; 34(4): 883-891, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37078305

RESUMO

We examined the effects of fertile soil layer construction technology on soil fertility and maize yield with a 3-year field experiment in Albic soil in Fujin, Heilongjiang Province. There were five treatments, including conventional tillage (T15, without organic matter return) and fertile soil layer construction methods [deep tillage (0-35 cm) with straw return, T35+S; deep tillage with organic manure, T35+M; deep tillage with straw and organic manure return, T35+S+M; deep tillage with straw, organic manure return and chemical fertilizer, T35+S+M+F]. The results showed that: 1) compared with the T15 treatment, maize yield was significantly increased by 15.4%-50.9% under fertile layer construction treatments. 2) There was no significant difference of soil pH among all treatments in the first two years, but fertile soil layer construction treatments significantly increased soil pH of topsoil (0-15 cm soil layer) in the third year. The pH of subsoil (15-35 cm soil layer) significantly increased under T35+S+M+F, T35+S+M, and T35+M treatments, while no significant difference was observed for T35+S treatment, compared with T15 treatment. 3) The fertile soil layer construction treatments could improve the nutrient contents of the topsoil and subsoil layer, especially in the subsoil layer, with the contents of organic matter, total nitrogen, available phosphorus, alkali-hydrolyzed nitrogen and available potassium being increased by 3.2%-46.6%, 9.1%-51.8%, 17.5%-130.1%, 4.4%-62.8%, 22.2%-68.7% under the subsoil layer, respectively. The fertility richness indices were increased in the subsoil layer, and nutrient contents of the subsoil layer were close to those of topsoil layer, indicating that 0-35 cm fertile soil layer had been constructed. 4) Soil organic matter contents in the 0-35 cm layer were increased by 8.8%-23.2% and 13.2%-30.1% in the second and third years of fertile soil layer construction, respectively. Soil organic carbon storage was also gradually increased under fertile soil layer construction treatments. 5) The carbon conversion rate of organic matter was 9.3%-20.9% under T35+S treatment, and 10.6%-24.6% under T35+M, T35+S+M, and T35+S+M+F treatments. The carbon sequestration rate was 815.7-3066.4 kg·hm-2·a-1 in fertile soil layer construction treatments. The carbon sequestration rate of T35+S treatment increased with experimental periods, and soil carbon content under T35+M, T35+S+M and T35+S+M+F treatments reached saturation point in the experimental second year. Construction of fertile soil layers could improve the fertility of topsoil and subsoil and maize yield. In term of economic benefits, combination application of maize straw, organic material and chemical fertilizer within 0-35 cm soil, cooperating with conservation tillage, is recommended for the Albic soil fertility improvement.


Assuntos
Agricultura , Solo , Solo/química , Agricultura/métodos , Zea mays , Carbono/análise , Fertilizantes , Esterco , Nitrogênio/análise , China
8.
Front Microbiol ; 13: 941170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910639

RESUMO

Changes in land use can generate environmental pressures that influence soil biodiversity, and numerous studies have examined the influences of land use on the soil microbial communities. However, little is known about the effects of land use on ecological interactions of soil microbes and their predators. Diazotrophs are key soil microbes that play important functional roles in fixing atmospheric nitrogen. In this study, we investigated the co-association of diazotroph community members and patterns of diazotroph and bacterivore networks under different long-term land uses including cropland, grassland, and bare land. Diazotroph community was characterized by high-throughput sequencing. The results indicated that land use type influenced the dominant genera of diazotrophs and shaped the occurrence of specific indicator diazotroph taxa. Co-existing pattern analysis of diazotrophs and bacterivores indicated that grassland converted from cropland increased the complexity of diazotroph and bacterivore network structure. The number of nodes for diazotrophs and bacterivores was higher in grassland than in cropland and bare land. Random forest analysis revealed that six bacterivore genera Cephalobus, Protorhabditis, Acrobeloides, Mesorhabditis, Anaplectus, and Monhystera had significant effects on diazotrophs. Bacterivores were found to have predominantly negative effects in bare land. Different bacterivores had differing effects with respect to driving changes in diazotroph community structure. Structural equation model showed that land use could control diazotroph community composition by altering soil properties and regulating abundance of bacterivores. These findings accordingly enhance our current understanding of mechanisms underlying the influence of land use patterns on diazotrophs from the perspective of soil food webs.

9.
Front Microbiol ; 11: 1915, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013730

RESUMO

Agricultural intensification accelerates the degradation of cropland, and restoration has been managed by changing its vegetation. However, the keystone microbiome that drives the decomposition of plant-associated organic matter in the restoration is poorly understood. In this study, we established a 14-year field restoration experiment on a degraded cropland with four treatments: (1) bare land soil without biomass input (BL), (2) maize cropland (CL) without fertilization and biomass input, (3) natural grassland (GL), and (4) alfalfa cropland (AL) with biomass left in the fields. The activity of total soil microbiome was assessed by community-level physiological profiling (CLPP) with Biolog EcoPlates analysis, and keystone microbiome was identified as phylotypes showing statistically significant increase in the restored soils (GL and AL) relative to the degraded BL soil. The results showed that GL and AL treatments improved soil fertility as indicated by significant increase in soil organic carbon, total nitrogen, and available phosphorus when compared to BL treatment. The significant difference was not observed between CL and BL treatments except for pH and available phosphorus, indicating that the input and microbial decomposition of plant-associated organic matter were the key for restoration of soil fertility. Similar results were obtained for soil microbial activities of carbon utilization efficiency via CLPP analysis, and real-time quantitative polymerase chain reaction of 16S rRNA genes further revealed significantly higher abundance of total soil microbial community in GL and AL soils than in BL and CL. High-throughput sequencing of total 16S rRNA genes revealed the Bacteroidetes as the only keystone taxa at phylum level, and 106 and 120 genera were keystone phylotypes. Compared with BL and CL, the genera that increase significantly in GL and AL are called keystone genera of ecological restoration. The dominant keystone genera included Reyranella, Mesorhizobium, Devosia, Haliangium, Nocardioides, and Pseudonocardia. Significantly higher abundance of Bacillus genus in BL soil implied it might serve as an indicator of agricultural land degradation. Statistical analysis showed that soil organic carbon and pH were significantly correlated with the input of plant-associated organic matters and dynamic changes of keystone taxa. These results suggest that the vegetation of natural grass (GL) and alfalfa plant (AL) and subsequent decomposition of plant-associated materials could serve as effective strategies for restoration of the degraded cropland by stimulating the keystone microbiomes and improving their physiological metabolisms of carbon utilization efficiency.

10.
Sci Rep ; 10(1): 14793, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908161

RESUMO

Application of phosphorus (P), a major plant nutrient, as fertilizer is critical to maintain P level for crop production and yield in most cultivated soils. While, it may impact the dynamics, limited studies have examined the long-term effects of fertilization on P fractions in a soil profile in Mollisol. A long-term field experiment was conducted at the State Key Experimental Station of Agroecology of the Chinese Academy of Sciences in Hailun county, Heilongjiang Province, China. A sequential fractionation procedure was used to determine the effect of fertilizer (types) treatments including no fertilizer (CK), chemical fertilizer (NPK), chemical fertilizer plus straw (NPK + S) and pig manure (OM) on fractions of P and their distribution within 0-100 cm soil profiles. Unlike CK treatment, the long-term application of fertilizers increased the concentration and accumulation of total and available P in 0-20 and 0-40 cm soil depths than deeper soils, respectively. The phosphorus activity coefficient (PAC) ranged from 1.5 to 13.8% within 0-100 cm soil depth. The largest PAC value was observed under OM treatment at 0-40 cm soil depth and under NPK + S treatment at 40-100 cm soil depth. The Ca2-P and Ca8-P concentrations increased significantly by 0.5-7.5 times and 0.5-10.4 times, respectively in OM treatment with the largest value in 0-40 cm soil depth over CK treatment. The Al-P concentration under NPK + S and OM treatments increased throughout the soil profile. The OM treatment increased all Po concentrations in the 0-40 cm soil depth, while NPK and NPK + S treatments increased labile organic P, moderately labile organic P, and highly stable organic P in the 0-20 cm soil depth. Thus, the application of fertilizer and straw, or organic manure may enhance inorganic and organic P pool in a Mollisol in Northeast China. Thus, organic manure application in the subsoil as a potential P source and their impact should be considered in developing management practices and policies regarding nutrient management.

11.
Ying Yong Sheng Tai Xue Bao ; 31(12): 4134-4146, 2020 Dec.
Artigo em Zh | MEDLINE | ID: mdl-33393251

RESUMO

Organic amendment return could enhance soil fertility, improve soil structure, and increase crop yield. However, how construction of soil layers can affect soil fertility and crop yield are not fully understood. We examined the effects of constructions of fertile and cultivated soil layer on soil fertility and maize yield in the upland black soil region in Northeast China, to provide theoretical guidance in increasing soil fertility and sustainable development of agriculture. Based on the combination of field plot experiments and demonstration regions, nine study sites with different ecological characteristics were selected from Heilongjiang, Jilin and Liaoning provinces from northeast China, covering dark brown, black, meadow, chernozem, albic, brown and cinnamon soils. There were three treatments in each study site, including maize straw return within 0-35 cm soil layer (CFⅠ), the combination of maize straw and organic manure return within 0-35 cm soil layer (CFⅡ) and conventional agricultural practice without organic amendmentas control (CK). The rate of straw return in CFⅠ and CFⅡ treatments were 10000 kg·hm-2, and full straw for demonstration regions. The rate of organic manure in CFⅡ treatment was 30000 kg·hm-2. Considerable difference in soil fertility were recorded among the nine study sites with the trend of tillage layer > sub-tillage layer, especially for dark brown soil and albic soil. Soil fertility of tillage layer and sub-tillage layer was relatively low both for brown soil and cinnamon soil. The heavy clay and plow pan were pivotal limiting factors of soil fertility for the black soil and the meadow soil. Compared with CK, the concentrations of soil organic matter (SOM), available nitrogen (AN), available phosphorous (AP), and available potassium (AK) in tillage layers was increased on average by 1.85 g·kg-1, 20.16 mg·kg-1, 1.56 mg·kg-1 and 17.2 mg·kg-1 in the CFⅠ and CFⅡ treatments in five study sites with more than two years of treatments. The contents of SOM, AN, AP and AK in sub-tillage layer increased by 2.09 g·kg-1, 12.06 mg·kg-1, 2.18 mg·kg-1 and 3.84 mg·kg-1, compared with tillage layer. CFⅠ treatment significantly enhanced the contents of SOM and AP in both tested soil layers, while CFⅡ treatment significantly enhanced all fertility indices in both tested soil layers. This indicated that the increase of organic amendment return is an effective way to improve soil fertility. Maize yield fluctuated under the combined effect of climatic conditions and soil types. The significant differences in maize yield under CK, CFⅠ and CFⅡ treatments were observed with a trend of CFⅡ > CFⅠ > CK. This result indicated that the construction of fertile and cultivated soil layer could significantly increase maize yield independent of soil types. The construction of fertile and cultivated soil layer based on maize straw return or maize straw and organic manure combined return within 0-35 cm soil layer, could simultaneously increase soil fertility in both tillage and sub-tillage layer, as well as maize yield. We suggested that the selection of approaches of the constructions of fertile and cultivated soil layer should consider soil types and the sources of organic amendments. It should also give priority to soil layers rich in organic manure source to construct fertile and cultivated soil layers.


Assuntos
Solo , Zea mays , Agricultura , China , Humanos
12.
Ying Yong Sheng Tai Xue Bao ; 26(4): 965-72, 2015 Apr.
Artigo em Zh | MEDLINE | ID: mdl-26259435

RESUMO

Taking soils in a long-term experimental field over 29 years with different land uses types, including arable land, bare land, grassland and larch forest land as test materials, the distribution and storage of soil organic carbon (SOC) in the profile (0-200 cm) in typical black soil (Mollisol) region of China were investigated. The results showed that the most significant differences in SOC content occurred in the 0-10 cm surface soil layer among all soils with the order of grassland > arable land > larch forest land > bare land. SOC contents at 10-120 cm depth were lower in arable land as compared with the other land use types. Compared with arable land, grassland could improve SOC content obviously. SOC content down to a depth of 60 cm in grassland was significantly higher than that in arable land. The content of SOC at 0-10 cm in bare land was significantly lower than that in arable land. Although there were no significant differences in SOC content at 0-20 cm depth between larch forestland and arable land, the SOC contents at 20-140 cm depth were generally higher in larch forestland than that in arable land. In general, SOC content showed a significantly negative relationship with soil pH, bulk density, silt and clay content and an even stronger significantly positive relationship with soil total N content and sand content. The SOC storage in arable land at 0-200 cm depth was significantly lower than that in the other three land use types, which was 13.6%, 11.4% and 10.9% lower than in grassland, bare land and larch forest land, respectively. Therefore, the arable land of black soil has a great potential for sequestering C in soil and improving environmental quality.


Assuntos
Sequestro de Carbono , Carbono/análise , Florestas , Pradaria , Solo/química , China
13.
Ying Yong Sheng Tai Xue Bao ; 20(12): 2996-3002, 2009 Dec.
Artigo em Zh | MEDLINE | ID: mdl-20353068

RESUMO

The clayey farmland soil in black soil region of Northeast China, due to the existence of thicker plough pan created by unreasonable tillage, is a main limiting factor for local agricultural production. In this paper, a field experiment was conducted to study the construction effect of fertile cultivated layer on crop yield, soil physical properties, soil moisture content, and soil microbial number. After the construction of fertile cultivated layer, the soil had a thicker cultivated layer, and the crop yield was increased. Comparing with traditional tillage, applying straw and organic manure into 20-35 cm soil layer decreased soil bulk density by 9.88% and 6.20%, increased soil porosity by 9.58% and 6.02%, and enhanced soil saturated hydraulic conductivity by 167.99 and 73.78%, respectively, indicating that the construction of fertile cultivated layer could improve soil aeration and water permeability, and enhance the infiltration of rainfall. The soil moisture content and water use efficiency under the application of straw and organic manure into plough pan were higher than those under traditional tillage, and a positive correlation was observed between the moisture content in 0-35 cm soil layer and the emergence of maize seedlings. Due to the increased organic carbon source and aeration in the constructed fertile cultivated layer, soil microbial number was also increased.


Assuntos
Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes , Solo/análise , Microbiologia do Solo , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA