Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sensors (Basel) ; 19(2)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669645

RESUMO

Fruit detection in real outdoor conditions is necessary for automatic guava harvesting, and the branch-dependent pose of fruits is also crucial to guide a robot to approach and detach the target fruit without colliding with its mother branch. To conduct automatic, collision-free picking, this study investigates a fruit detection and pose estimation method by using a low-cost red⁻green⁻blue⁻depth (RGB-D) sensor. A state-of-the-art fully convolutional network is first deployed to segment the RGB image to output a fruit and branch binary map. Based on the fruit binary map and RGB-D depth image, Euclidean clustering is then applied to group the point cloud into a set of individual fruits. Next, a multiple three-dimensional (3D) line-segments detection method is developed to reconstruct the segmented branches. Finally, the 3D pose of the fruit is estimated using its center position and nearest branch information. A dataset was acquired in an outdoor orchard to evaluate the performance of the proposed method. Quantitative experiments showed that the precision and recall of guava fruit detection were 0.983 and 0.948, respectively; the 3D pose error was 23.43° ± 14.18°; and the execution time per fruit was 0.565 s. The results demonstrate that the developed method can be applied to a guava-harvesting robot.

2.
Sensors (Basel) ; 17(11)2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29112177

RESUMO

Recognition and matching of litchi fruits are critical steps for litchi harvesting robots to successfully grasp litchi. However, due to the randomness of litchi growth, such as clustered growth with uncertain number of fruits and random occlusion by leaves, branches and other fruits, the recognition and matching of the fruit become a challenge. Therefore, this study firstly defined mature litchi fruit as three clustered categories. Then an approach for recognition and matching of clustered mature litchi fruit was developed based on litchi color images acquired by binocular charge-coupled device (CCD) color cameras. The approach mainly included three steps: (1) calibration of binocular color cameras and litchi image acquisition; (2) segmentation of litchi fruits using four kinds of supervised classifiers, and recognition of the pre-defined categories of clustered litchi fruit using a pixel threshold method; and (3) matching the recognized clustered fruit using a geometric center-based matching method. The experimental results showed that the proposed recognition method could be robust against the influences of varying illumination and occlusion conditions, and precisely recognize clustered litchi fruit. In the tested 432 clustered litchi fruits, the highest and lowest average recognition rates were 94.17% and 92.00% under sunny back-lighting and partial occlusion, and sunny front-lighting and non-occlusion conditions, respectively. From 50 pairs of tested images, the highest and lowest matching success rates were 97.37% and 91.96% under sunny back-lighting and non-occlusion, and sunny front-lighting and partial occlusion conditions, respectively.

3.
Sensors (Basel) ; 16(12)2016 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-27973409

RESUMO

The automatic fruit detection and precision picking in unstructured environments was always a difficult and frontline problem in the harvesting robots field. To realize the accurate identification of grape clusters in a vineyard, an approach for the automatic detection of ripe grape by combining the AdaBoost framework and multiple color components was developed by using a simple vision sensor. This approach mainly included three steps: (1) the dataset of classifier training samples was obtained by capturing the images from grape planting scenes using a color digital camera, extracting the effective color components for grape clusters, and then constructing the corresponding linear classification models using the threshold method; (2) based on these linear models and the dataset, a strong classifier was constructed by using the AdaBoost framework; and (3) all the pixels of the captured images were classified by the strong classifier, the noise was eliminated by the region threshold method and morphological filtering, and the grape clusters were finally marked using the enclosing rectangle method. Nine hundred testing samples were used to verify the constructed strong classifier, and the classification accuracy reached up to 96.56%, higher than other linear classification models. Moreover, 200 images captured under three different illuminations in the vineyard were selected as the testing images on which the proposed approach was applied, and the average detection rate was as high as 93.74%. The experimental results show that the approach can partly restrain the influence of the complex background such as the weather condition, leaves and changing illumination.

4.
J Nurs Care Qual ; 31(1): 61-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26035707

RESUMO

A standardized nursing handoff form was designed and implemented to improve handoff process, and rates of nursing errors were measured to determine the effectiveness of the intervention. This study was a prospective intervention study, using 1-group pretest-posttest quasi-experimental design, conducted on an inpatient medical unit. The rates of nursing errors decreased from 9.2 (95% confidence interval, 8.0-10.3) to 5.7 (95% confidence interval, 5.1-6.9) per 100 admissions (P < .001), comparing the pre- and postintervention periods.


Assuntos
Unidades Hospitalares , Erros Médicos/estatística & dados numéricos , Transferência da Responsabilidade pelo Paciente/normas , Melhoria de Qualidade , Adulto , China , Comunicação , Feminino , Humanos , Recursos Humanos de Enfermagem Hospitalar/educação , Estudos Prospectivos
5.
Tumour Biol ; 35(7): 7217-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24771263

RESUMO

Numerous attempts for detection of circulating tumor cells (CTC) have been made to develop reliable assays for early diagnosis of cancers. In this study, we validated the application of folate receptor α (FRα) as the tumor marker to detect CTC through tumor-specific ligand PCR (LT-PCR) and assessed its utility for diagnosis of bladder transitional cell carcinoma (TCC). Immunohistochemistry for FRα was performed on ten bladder TCC tissues. Enzyme-linked immunosorbent assay (ELISA) for FRα was performed on both urine and serum specimens from bladder TCC patients (n = 64 and n = 20, respectively) and healthy volunteers (n = 20 and n = 23, respectively). Western blot analysis and qRT-PCR were performed to confirm the expression of FRα in bladder TCC cells. CTC values in 3-mL peripheral blood were measured in 57 bladder TCC patients, 48 healthy volunteers, and 15 subjects with benign urologic pathologies by the folate receptor α ligand-targeted PCR. We found that FRα protein was overexpressed in both bladder TCC cells and tissues. The levels of FRα mRNA were also much higher in bladder cancer cell lines 5637 and SW780 than those of leukocyte. Values of FRα were higher in both serum and urine specimens of bladder TCC patients than those of control. CTC values were also higher in 3-mL peripheral blood of bladder TCC patients than those of control (median 26.5 Cu/3 mL vs 14.0 Cu/3 mL). Area under the receiver operating characteristic (ROC) curve for bladder TCC detection was 0.819, 95 % CI (0.738-0.883). At the cutoff value of 15.43 Cu/3 mL, the sensitivity and the specificity for detecting bladder cancer are 82.14 and 61.9 %, respectively. We concluded that quantitation of CTCs through FRα ligand-PCR could be a promising method for noninvasive diagnosis of bladder TCC.


Assuntos
Carcinoma de Células de Transição/sangue , Receptor 1 de Folato/sangue , Células Neoplásicas Circulantes , Neoplasias da Bexiga Urinária/sangue , Biomarcadores Tumorais/sangue , Carcinoma de Células de Transição/diagnóstico , Carcinoma de Células de Transição/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Receptor 1 de Folato/isolamento & purificação , Humanos , Ligantes , Masculino , RNA Mensageiro/biossíntese , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/patologia
6.
Front Plant Sci ; 15: 1397816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903428

RESUMO

Citrus fruits are extensively cultivated fruits with high nutritional value. The identification of distinct ripeness stages in citrus fruits plays a crucial role in guiding the planning of harvesting paths for citrus-picking robots and facilitating yield estimations in orchards. However, challenges arise in the identification of citrus fruit ripeness due to the similarity in color between green unripe citrus fruits and tree leaves, leading to an omission in identification. Additionally, the resemblance between partially ripe, orange-green interspersed fruits and fully ripe fruits poses a risk of misidentification, further complicating the identification of citrus fruit ripeness. This study proposed the YOLO-CIT (You Only Look Once-Citrus) model and integrated an innovative R-LBP (Roughness-Local Binary Pattern) method to accurately identify citrus fruits at distinct ripeness stages. The R-LBP algorithm, an extension of the LBP algorithm, enhances the texture features of citrus fruits at distinct ripeness stages by calculating the coefficient of variation in grayscale values of pixels within a certain range in different directions around the target pixel. The C3 model embedded by the CBAM (Convolutional Block Attention Module) replaced the original backbone network of the YOLOv5s model to form the backbone of the YOLO-CIT model. Instead of traditional convolution, Ghostconv is utilized by the neck network of the YOLO-CIT model. The fruit segment of citrus in the original citrus images processed by the R-LBP algorithm is combined with the background segment of the citrus images after grayscale processing to construct synthetic images, which are subsequently added to the training dataset. The experiment showed that the R-LBP algorithm is capable of amplifying the texture features among citrus fruits at distinct ripeness stages. The YOLO-CIT model combined with the R-LBP algorithm has a Precision of 88.13%, a Recall of 93.16%, an F1 score of 90.89, a mAP@0.5 of 85.88%, and 6.1ms of average detection speed for citrus fruit ripeness identification in complex environments. The model demonstrates the capability to accurately and swiftly identify citrus fruits at distinct ripeness stages in real-world environments, effectively guiding the determination of picking targets and path planning for harvesting robots.

7.
Animals (Basel) ; 14(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731372

RESUMO

With the rapid development of the turtle breeding industry in China, the demand for automated turtle sorting is increasing. The automatic sorting of Chinese softshell turtles mainly consists of three parts: visual recognition, weight prediction, and individual sorting. This paper focuses on two aspects, i.e., visual recognition and weight prediction, and a novel method for the object detection and weight prediction of Chinese softshell turtles is proposed. In the individual sorting process, computer vision technology is used to estimate the weight of Chinese softshell turtles and classify them by weight. For the visual recognition of the body parts of Chinese softshell turtles, a color space model is proposed in this paper to separate the turtles from the background effectively. By applying multiple linear regression analysis for modeling, the relationship between the weight and morphological parameters of Chinese softshell turtles is obtained, which can be used to estimate the weight of turtles well. An improved deep learning object detection network is used to extract the features of the plastron and carapace of the Chinese softshell turtles, achieving excellent detection results. The mAP of the improved network reached 96.23%, which can meet the requirements for the accurate identification of the body parts of Chinese softshell turtles.

8.
Front Plant Sci ; 14: 1103276, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332733

RESUMO

Accurate road extraction and recognition of roadside fruit in complex orchard environments are essential prerequisites for robotic fruit picking and walking behavioral decisions. In this study, a novel algorithm was proposed for unstructured road extraction and roadside fruit synchronous recognition, with wine grapes and nonstructural orchards as research objects. Initially, a preprocessing method tailored to field orchards was proposed to reduce the interference of adverse factors in the operating environment. The preprocessing method contained 4 parts: interception of regions of interest, bilateral filter, logarithmic space transformation and image enhancement based on the MSRCR algorithm. Subsequently, the analysis of the enhanced image enabled the optimization of the gray factor, and a road region extraction method based on dual-space fusion was proposed by color channel enhancement and gray factor optimization. Furthermore, the YOLO model suitable for grape cluster recognition in the wild environment was selected, and its parameters were optimized to enhance the recognition performance of the model for randomly distributed grapes. Finally, a fusion recognition framework was innovatively established, wherein the road extraction result was taken as input, and the optimized parameter YOLO model was utilized to identify roadside fruits, thus realizing synchronous road extraction and roadside fruit detection. Experimental results demonstrated that the proposed method based on the pretreatment could reduce the impact of interfering factors in complex orchard environments and enhance the quality of road extraction. Using the optimized YOLOv7 model, the precision, recall, mAP, and F1-score for roadside fruit cluster detection were 88.9%, 89.7%, 93.4%, and 89.3%, respectively, all of which were higher than those of the YOLOv5 model and were more suitable for roadside grape recognition. Compared to the identification results obtained by the grape detection algorithm alone, the proposed synchronous algorithm increased the number of fruit identifications by 23.84% and the detection speed by 14.33%. This research enhanced the perception ability of robots and provided a solid support for behavioral decision systems.

9.
Front Plant Sci ; 13: 954757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325548

RESUMO

Forests are indispensable links in the ecological chain and important ecosystems in nature. The destruction of forests seriously influences the ecological environment of the Earth. Forest protection plays an important role in human sustainable development, and the most important aspect of forest protection is preventing forest fires. Fire affects the structure and dynamics of forests and also climate and geochemical cycles. Using various technologies to monitor the occurrence of forest fires, quickly finding the source of forest fires, and conducting early intervention are of great significance to reducing the damage caused by forest fires. An improved forest fire risk identification algorithm is established based on a deep learning algorithm to accurately identify forest fire risk in a complex natural environment. First, image enhancement and morphological preprocessing are performed on a forest fire risk image. Second, the suspected forest fire area is segmented. The color segmentation results are compared using the HAF and MCC methods, and the suspected forest fire area features are extracted. Finally, the forest fire risk image recognition processing is conducted. A forest fire risk dataset is constructed to compare different classification methods to predict the occurrence of forest fire risk to improve the backpropagation (BP) neural network forest fire identification algorithm. An improved machine learning algorithm is used to evaluate the classification accuracy. The results reveal that the algorithm changes the learning rate between 0.1 and 0.8, consistent with the cross-index verification of the 10x sampling algorithm. In the combined improved BP neural network and support vector machine (SVM) classifier, forest fire risk is recognized based on feature extraction and the BP network. In total, 1,450 images are used as the training set. The experimental results reveal that in image preprocessing, image enhancement technology using the frequency and spatial domain methods can enhance the useful information of the image and improve its clarity. In the image segmentation stage, MCC is used to evaluate the segmentationresults. The accuracy of this algorithm is high compared with other algorithms, up to 92.73%. Therefore, the improved forest fire risk identification algorithm can accurately identify forest fire risk in the natural environment and contribute to forest protection.

10.
Front Plant Sci ; 11: 510, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508853

RESUMO

The utilization of machine vision and its associated algorithms improves the efficiency, functionality, intelligence, and remote interactivity of harvesting robots in complex agricultural environments. Machine vision and its associated emerging technology promise huge potential in advanced agricultural applications. However, machine vision and its precise positioning still have many technical difficulties, making it difficult for most harvesting robots to achieve true commercial applications. This article reports the application and research progress of harvesting robots and vision technology in fruit picking. The potential applications of vision and quantitative methods of localization, target recognition, 3D reconstruction, and fault tolerance of complex agricultural environment are focused, and fault-tolerant technology designed for utilization with machine vision and robotic systems are also explored. The two main methods used in fruit recognition and localization are reviewed, including digital image processing technology and deep learning-based algorithms. The future challenges brought about by recognition and localization success rates are identified: target recognition in the presence of illumination changes and occlusion environments; target tracking in dynamic interference-laden environments, 3D target reconstruction, and fault tolerance of the vision system for agricultural robots. In the end, several open research problems specific to recognition and localization applications for fruit harvesting robots are mentioned, and the latest development and future development trends of machine vision are described.

11.
Nat Genet ; 45(12): 1459-63, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24121792

RESUMO

Bladder cancer is one of the most common cancers worldwide, with transitional cell carcinoma (TCC) being the predominant form. Here we report a genomic analysis of TCC by both whole-genome and whole-exome sequencing of 99 individuals with TCC. Beyond confirming recurrent mutations in genes previously identified as being mutated in TCC, we identified additional altered genes and pathways that were implicated in TCC. Notably, we discovered frequent alterations in STAG2 and ESPL1, two genes involved in the sister chromatid cohesion and segregation (SCCS) process. Furthermore, we also detected a recurrent fusion involving FGFR3 and TACC3, another component of SCCS, by transcriptome sequencing of 42 DNA-sequenced tumors. Overall, 32 of the 99 tumors (32%) harbored genetic alterations in the SCCS process. Our analysis provides evidence that genetic alterations affecting the SCCS process may be involved in bladder tumorigenesis and identifies a new therapeutic possibility for bladder cancer.


Assuntos
Carcinoma de Células de Transição/genética , Segregação de Cromossomos/genética , Exoma/genética , Troca de Cromátide Irmã/genética , Neoplasias da Bexiga Urinária/genética , Sequência de Bases , Estudos de Casos e Controles , Transformação Celular Neoplásica/genética , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA