Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 773: 145670, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940755

RESUMO

Lead pollution has become a global concern due to its ubiquity and persistence. This study describes two FeMn oxide substrate adsorbents, namely, FeMn binary oxides (FMBO) and mesoporous FeMn binary oxide (MFMBO) covered with tannic acid film (FMBO@TA-Fe3+ and MFMBO@TA-Fe3+), for the treatment of Pb2+ in water. The characterization results showed that TA was successfully coated onto the surfaces of FMBO and MFMBO. The maximum capacities of Pb2+ on FMBO@TA-Fe3+ and MFMBO@TA-Fe3+ were 322.08 and 357.14 mg g-1, respectively, which were twice those of FMBO and MFMBO. The adsorption of Pb2+ on the adsorbents was a spontaneous, endothermic process with increasing disorder through thermodynamics studies. An overall mechanism was proposed for Pb2+ adsorption, the improved adsorption performance of FMBO@TA-Fe3+ and MFMBO@TA-Fe3+ is ascribed to the mesoporous characteristics and the introduction of hydroxyl groups. Further investigation indicated the adsorption of Pb2+ could be attributed to electrostatic interactions on FMBO@TA-Fe3+ and MFMBO@TA-Fe3+, and cation exchange existed through the formation of these internal surface complexes. The Pb2+-loaded adsorbents could be effectively desorbed in a dilute hydrochloric acid solution, promoting recycling and reuse of the regenerated adsorbents. These results warrant the promising application of FMBO@TA-Fe3+ and MFMBO@TA-Fe3+ for the removal of Pb2+, and this work first proposed TA film-modified FMBO and MFMBO to improve its adsorption capacity in the application of environmental remediation.

2.
Sci Total Environ ; 682: 118-127, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31108266

RESUMO

The adsorption behavior and mechanism of Cr(VI) on different acid-modified UiO-66s (Form-UiO-66 and Ac-UiO-66) were systematically investigated for the first time through a series of characterizations, and theoretical calculations of batch experiments. The characterization results demonstrate that acid-modified UiO-66 exhibited a larger specific surface area than did unmodified UiO-66. In addition, since the regulator (formic acid) of Form-UiO-66 was the stronger competition, the specific surface area of Form-UiO-66 (1138 m2 g-1) was larger than that of Ac-UiO-66 (915 m2 g-1). Under optimal experimental conditions, the maximum adsorption capacity of Cr(VI) was 243.9 mg g-1 on Form-UiO-66, and 151.52 mg g-1 on Ac-UiO-66, which was far higher than on the reported unmodified UiO-66 (36.4 mg g-1). The results of pH testing, zeta potential, and X-ray photoelectron spectroscopy analysis indicate that Cr(VI) ions were fixed to adsorbent surfaces via electrostatic adsorption. Acid-modified UiO-66 increased the surface active site via the increase in its specific surface area to enhance adsorption capacity of Cr(VI). These results indicated that both the surface charge and specific surface area of the adsorbent primarily determined the Cr(VI) adsorption capacity. Acid modified UiO-66 exhibited enhanced adsorption capacity, stability, and regeneration, compared to traditional adsorbents, and these results provide new insights into adsorption by MOFs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA