Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 23 Suppl 1: 50-57, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32745347

RESUMO

With continued climate changes, soil drought stress has become the main limiting factor for crop growth in arid and semi-arid regions. A typical characteristic of drought stress is the burst of reactive oxygen species (ROS), causing oxidative damage. Plant-associated microbes, such as arbuscular mycorrhizal fungi (AMF), can regulate physiological and molecular responses to tolerate drought stress, and they have a strong ability to cope with drought-induced oxidative damage via enhanced antioxidant defence systems. AMF produce a limited oxidative burst in the arbuscule-containing root cortical cells. Similar to plants, AMF modulate a fungal network in enzymatic (e.g. GmarCuZnSOD and GintSOD1) and non-enzymatic (e.g. GintMT1, GinPDX1 and GintGRX1) antioxidant defence systems to scavenge ROS. Plants also respond to mycorrhization to enhance stress tolerance via metabolites and the induction of genes. The present review provides an overview of the network of plant - arbuscular mycorrhizal fungus dialogue in mitigating oxidative stress. Future studies should involve identifying genes and transcription factors from both AMF and host plants in response to drought stress, and utilize transcriptomics, proteomics and metabolomics to clarify a clear dialogue mechanism between plants and AMF in mitigating oxidative burst.


Assuntos
Micorrizas , Secas , Raízes de Plantas , Plantas , Explosão Respiratória , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA