Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 144(2): 584-600, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33559681

RESUMO

The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6-83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses.


Assuntos
Proteínas da Matriz Extracelular/genética , Neuropatia Hereditária Motora e Sensorial/genética , Adulto , Idoso , Animais , Comportamento Animal/fisiologia , Criança , Feminino , Neuropatia Hereditária Motora e Sensorial/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Mutação , Linhagem , Adulto Jovem , Peixe-Zebra
2.
Ann Neurol ; 88(2): 332-347, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32403198

RESUMO

OBJECTIVE: A hitherto undescribed phenotype of early onset muscular dystrophy associated with sensorineural hearing loss and primary ovarian insufficiency was initially identified in 2 siblings and in subsequent patients with a similar constellation of findings. The goal of this study was to understand the genetic and molecular etiology of this condition. METHODS: We applied whole exome sequencing (WES) superimposed on shared haplotype regions to identify the initial biallelic variants in GGPS1 followed by GGPS1 Sanger sequencing or WES in 5 additional families with the same phenotype. Molecular modeling, biochemical analysis, laser membrane injury assay, and the generation of a Y259C knock-in mouse were done. RESULTS: A total of 11 patients in 6 families carrying 5 different biallelic pathogenic variants in specific domains of GGPS1 were identified. GGPS1 encodes geranylgeranyl diphosphate synthase in the mevalonate/isoprenoid pathway, which catalyzes the synthesis of geranylgeranyl pyrophosphate, the lipid precursor of geranylgeranylated proteins including small guanosine triphosphatases. In addition to proximal weakness, all but one patient presented with congenital sensorineural hearing loss, and all postpubertal females had primary ovarian insufficiency. Muscle histology was dystrophic, with ultrastructural evidence of autophagic material and large mitochondria in the most severe cases. There was delayed membrane healing after laser injury in patient-derived myogenic cells, and a knock-in mouse of one of the mutations (Y259C) resulted in prenatal lethality. INTERPRETATION: The identification of specific GGPS1 mutations defines the cause of a unique form of muscular dystrophy with hearing loss and ovarian insufficiency and points to a novel pathway for this clinical constellation. ANN NEUROL 2020;88:332-347.


Assuntos
Dimetilaliltranstransferase/genética , Farnesiltranstransferase/genética , Geraniltranstransferase/genética , Perda Auditiva/genética , Distrofias Musculares/genética , Mutação/genética , Insuficiência Ovariana Primária/genética , Adolescente , Adulto , Animais , Feminino , Técnicas de Introdução de Genes/métodos , Perda Auditiva/diagnóstico por imagem , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Distrofias Musculares/diagnóstico por imagem , Linhagem , Insuficiência Ovariana Primária/diagnóstico por imagem , Estrutura Secundária de Proteína , Análise de Sequência de DNA/métodos , Sequenciamento do Exoma/métodos , Adulto Jovem
3.
Hum Mol Genet ; 26(12): 2207-2217, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28419360

RESUMO

Collagen prolyl 4-hydroxylases (C-P4Hs) play a central role in the formation and stabilization of the triple helical domain of collagens. P4HA1 encodes the catalytic α(I) subunit of the main C-P4H isoenzyme (C-P4H-I). We now report human bi-allelic P4HA1 mutations in a family with a congenital-onset disorder of connective tissue, manifesting as early-onset joint hypermobility, joint contractures, muscle weakness and bone dysplasia as well as high myopia, with evidence of clinical improvement of motor function over time in the surviving patient. Similar to P4ha1 null mice, which die prenatally, the muscle tissue from P1 and P2 was found to have reduced collagen IV immunoreactivity at the muscle basement membrane. Patients were compound heterozygous for frameshift and splice site mutations leading to reduced, but not absent, P4HA1 protein level and C-P4H activity in dermal fibroblasts compared to age-matched control samples. Differential scanning calorimetry revealed reduced thermal stability of collagen in patient-derived dermal fibroblasts versus age-matched control samples. Mutations affecting the family of C-P4Hs, and in particular C-P4H-I, should be considered in patients presenting with congenital connective tissue/myopathy overlap disorders with joint hypermobility, contractures, mild skeletal dysplasia and high myopia.


Assuntos
Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Prolil Hidroxilases/genética , Animais , Membrana Basal/metabolismo , Osso e Ossos/metabolismo , Criança , Colágeno Tipo IV/genética , Tecido Conjuntivo , Humanos , Masculino , Camundongos , Camundongos Knockout , Músculos/metabolismo , Mutação , Osteocondrodisplasias/genética , Prolil Hidroxilases/metabolismo , Tendões/metabolismo
4.
Muscle Nerve ; 55(2): 277-281, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27348394

RESUMO

INTRODUCTION: Mutations in the COL12A1 (collagen, type XII, alpha 1) gene have been described in a milder Bethlem-like myopathy in 6 patients from 3 families (dominant missense), and in a severe congenital form with failure to attain ambulation in 2 patients in a single pedigree (recessive loss-of-function). METHODS: We describe an 8-year-old girl of Polish origin who presented with profound hypotonia and joint hyperlaxity at birth after a pregnancy complicated by oligohydramnios and intrauterine growth retardation. RESULTS: We identified a novel, potentially pathogenic heterozygous missense COL12A1 c.8329G>C (p.Gly2777Arg) variant using a targeted sequencing panel. Patient fibroblast studies confirmed intracellular retention of the COL12A1 protein, consistent with a dominant-negative mutation. CONCLUSIONS: As our patient showed a more intermediate phenotype, this case expands the phenotypic spectrum for COL12A1 disorders. So far, COL12A1 disorders seem to cover much of the severity range of an Ehlers-Danlos/Bethlem-like myopathy overlap syndrome associated with both connective tissue abnormalities and muscle weakness. Muscle Nerve 55: 277-281, 2017.


Assuntos
Colágeno Tipo XII/genética , Matriz Extracelular/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Criança , Feminino , Humanos , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia
5.
Hum Mol Genet ; 23(9): 2339-52, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24334604

RESUMO

Collagen VI-related myopathies are disorders of connective tissue presenting with an overlap phenotype combining clinical involvement from the muscle and from the connective tissue. Not all patients displaying related overlap phenotypes between muscle and connective tissue have mutations in collagen VI. Here, we report a homozygous recessive loss of function mutation and a de novo dominant mutation in collagen XII (COL12A1) as underlying a novel overlap syndrome involving muscle and connective tissue. Two siblings homozygous for a loss of function mutation showed widespread joint hyperlaxity combined with weakness precluding independent ambulation, while the patient with the de novo missense mutation was more mildly affected, showing improvement including the acquisition of walking. A mouse model with inactivation of the Col12a1 gene showed decreased grip strength, a delay in fiber-type transition and a deficiency in passive force generation while the muscle seems more resistant to eccentric contraction induced force drop, indicating a role for a matrix-based passive force-transducing elastic element in the generation of the weakness. This new muscle connective tissue overlap syndrome expands on the emerging importance of the muscle extracellular matrix in the pathogenesis of muscle disease.


Assuntos
Colágeno Tipo XII/genética , Doenças Musculares/genética , Mutação/genética , Animais , Pré-Escolar , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Colágeno Tipo XII/metabolismo , Modelos Animais de Doenças , Humanos , Lactente , Masculino , Camundongos , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia
6.
Hum Mol Genet ; 23(9): 2353-63, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24334769

RESUMO

Bethlem myopathy (BM) [MIM 158810] is a slowly progressive muscle disease characterized by contractures and proximal weakness, which can be caused by mutations in one of the collagen VI genes (COL6A1, COL6A2 and COL6A3). However, there may be additional causal genes to identify as in ∼50% of BM cases no mutations in the COL6 genes are identified. In a cohort of -24 patients with a BM-like phenotype, we first sequenced 12 candidate genes based on their function, including genes for known binding partners of collagen VI, and those enzymes involved in its correct post-translational modification, assembly and secretion. Proceeding to whole-exome sequencing (WES), we identified mutations in the COL12A1 gene, a member of the FACIT collagens (fibril-associated collagens with interrupted triple helices) in five individuals from two families. Both families showed dominant inheritance with a clinical phenotype resembling classical BM. Family 1 had a single-base substitution that led to the replacement of one glycine residue in the triple-helical domain, breaking the Gly-X-Y repeating pattern, and Family 2 had a missense mutation, which created a mutant protein with an unpaired cysteine residue. Abnormality at the protein level was confirmed in both families by the intracellular retention of collagen XII in patient dermal fibroblasts. The mutation in Family 2 leads to the up-regulation of genes associated with the unfolded protein response (UPR) pathway and swollen, dysmorphic rough-ER. We conclude that the spectrum of causative genes in extracellular matrix (ECM)-related myopathies be extended to include COL12A1.


Assuntos
Colágeno Tipo XII/genética , Colágeno/genética , Matriz Extracelular/metabolismo , Doenças Musculares/genética , Doenças Musculares/patologia , Adolescente , Adulto , Criança , Colágeno Tipo VI/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Adulto Jovem
7.
Am J Hum Genet ; 90(2): 201-16, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22265013

RESUMO

We report on an autosomal-recessive variant of Ehlers-Danlos syndrome (EDS) characterized by severe muscle hypotonia at birth, progressive scoliosis, joint hypermobility, hyperelastic skin, myopathy, sensorineural hearing impairment, and normal pyridinoline excretion in urine. Clinically, the disorder shares many features with the kyphoscoliotic type of EDS (EDS VIA) and Ullrich congenital muscular dystrophy. Linkage analysis in a large Tyrolean kindred identified a homozygous frameshift mutation in FKBP14 in two affected individuals. Based on the cardinal clinical characteristics of the disorder, four additional individuals originating from different European countries were identified who carried either homozygous or compound heterozygous mutations in FKBP14. FKBP14 belongs to the family of FK506-binding peptidyl-prolyl cis-trans isomerases (PPIases). ER-resident FKBPs have been suggested to act as folding catalysts by accelerating cis-trans isomerization of peptidyl-prolyl bonds and to act occasionally also as chaperones. We demonstrate that FKBP14 is localized in the endoplasmic reticulum (ER) and that deficiency of FKBP14 leads to enlarged ER cisterns in dermal fibroblasts in vivo. Furthermore, indirect immunofluorescence of FKBP14-deficient fibroblasts indicated an altered assembly of the extracellular matrix in vitro. These findings suggest that a disturbance of protein folding in the ER affecting one or more components of the extracellular matrix might cause the generalized connective tissue involvement in this disorder. FKBP14 mutation analysis should be considered in all individuals with apparent kyphoscoliotic type of EDS and normal urinary pyridinoline excretion, in particular in conjunction with sensorineural hearing impairment.


Assuntos
Anormalidades Múltiplas/genética , Síndrome de Ehlers-Danlos/genética , Mutação da Fase de Leitura , Perda Auditiva/genética , Peptidilprolil Isomerase/genética , Adolescente , Aminoácidos/urina , Criança , Pré-Escolar , Síndrome de Ehlers-Danlos/urina , Retículo Endoplasmático/genética , Matriz Extracelular/genética , Feminino , Fibroblastos/metabolismo , Variação Genética , Perda Auditiva/urina , Heterozigoto , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Dobramento de Proteína , cis-trans-Isomerases/genética
8.
Neurol Genet ; 10(3): e200148, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38915423

RESUMO

Background and Objectives: Omigapil is a small molecule which inhibits the GAPDH-Siah1-mediated apoptosis pathway. Apoptosis is a pathomechanism underlying the congenital muscular dystrophy subtypes LAMA2-related dystrophy (LAMA2-RD) and COL6-related dystrophy (COL6-RD). Studies of omigapil in the (dyw/dyw) LAMA2-RD mouse model demonstrated improved survival, and studies in the (dy2J/dy2J) LAMA2-RD mouse model and the (Col6a1-/-) COL6-RD mouse model demonstrated decreased apoptosis. Methods: A phase 1 open-label, sequential group, ascending oral dose, cohort study of omigapil in patients with LAMA2-RD or COL6-RD ages 5-16 years was performed (1) to establish the pharmacokinetic (PK) profile of omigapil at a range of doses, (2) to evaluate the safety and tolerability of omigapil at a range of doses, and (3) to establish the feasibility of conducting disease-relevant clinical assessments. Patients were enrolled in cohorts of size 4, with each patient receiving 4 weeks of vehicle run-in and 12 weeks of study drug (at daily doses ranging from 0.02 to 0.08 mg/kg). PK data from each cohort were analyzed before each subsequent dosing cohort was enrolled. A novel, adaptive dose-finding method (stochastic approximation with virtual observation recursion) was used to allow for dose escalation/reduction between cohorts based on PK data. Results: Twenty patients were enrolled at the NIH (LAMA2-RD: N = 10; COL6-RD: N = 10). Slightly greater than dose-proportional increases in systemic exposure to omigapil were seen at doses 0.02-0.08 mg/kg/d. The dose which achieved patient exposure within the pre-established target area under the plasma concentration-vs-time curve (AUC0-24h) range was 0.06 mg/kg/d. In general, omigapil was safe and well tolerated. No consistent changes were seen in the disease-relevant clinical assessments during the duration of the study. Discussion: This study represents the thus far only clinical trial of a therapeutic small molecule for LAMA2-RD and COL6-RD, completed with an adaptive trial design to arrive at dose adjustments. The trial met its primary end point and established that the PK profile of omigapil is suitable for further development in pediatric patients with LAMA2-RD or COL6-RD, the most common forms of congenital muscular dystrophy. While within the short duration of the study disease-relevant clinical assessments did not demonstrate significant changes, this study establishes the feasibility of performing interventional clinical trials in these rare disease patient populations. Classification of Evidence: This study provides Class IV evidence of omigapil in a dose-finding phase 1 study. Trial Registration Information: Clinical Trials NCT01805024.

9.
Hum Mutat ; 34(11): 1558-67, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24038877

RESUMO

Glycine substitutions in the conserved Gly-X-Y motif in the triple helical (TH) domain of collagen VI are the most commonly identified mutations in the collagen VI myopathies including Ullrich congenital muscular dystrophy, Bethlem myopathy, and intermediate (INT) phenotypes. We describe clinical and genetic characteristics of 97 individuals with glycine substitutions in the TH domain of COL6A1, COL6A2, or COL6A3 and add a review of 97 published cases, for a total of 194 cases. Clinical findings include severe, INT, and mild phenotypes even from patients with identical mutations. INT phenotypes were most common, accounting for almost half of patients, emphasizing the importance of INT phenotypes to the overall phenotypic spectrum. Glycine substitutions in the TH domain are heavily clustered in a short segment N-terminal to the 17th Gly-X-Y triplet, where they are acting as dominants. The most severe cases are clustered in an even smaller region including Gly-X-Y triplets 10-15, accounting for only 5% of the TH domain. Our findings suggest that clustering of glycine substitutions in the N-terminal region of collagen VI is not based on features of the primary sequence. We hypothesize that this region may represent a functional domain within the triple helix.


Assuntos
Substituição de Aminoácidos , Colágeno Tipo VI/genética , Padrões de Herança , Doenças Musculares/genética , Mutação , Adolescente , Adulto , Criança , Pré-Escolar , Colágeno Tipo VI/química , Fibroblastos/metabolismo , Estudos de Associação Genética , Glicina , Humanos , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fenótipo , Domínios e Motivos de Interação entre Proteínas , Índice de Gravidade de Doença , Pele/metabolismo , Adulto Jovem
10.
Med ; 4(4): 245-251.e3, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36905929

RESUMO

BACKGROUND: Utrophin, a dystrophin homolog, is consistently upregulated in muscles of patients with Duchenne muscular dystrophy (DMD) and is believed to partially compensate for the lack of dystrophin in dystrophic muscle. Even though several animal studies support the idea that utrophin can modulate DMD disease severity, human clinical data are scarce. METHODS: We describe a patient with the largest reported in-frame deletion in the DMD gene, including exons 10-60 and thus encompassing the entire rod domain. FINDINGS: The patient presented with an unusually early and severe progressive weakness, initially suggesting congenital muscular dystrophy. Immunostaining of his muscle biopsy showed that the mutant protein was able to localize at the sarcolemma and stabilize the dystrophin-associated complex. Strikingly, utrophin protein was absent from the sarcolemmal membrane despite the upregulation of utrophin mRNA. CONCLUSIONS: Our results suggest that the internally deleted and dysfunctional dystrophin lacking the entire rod domain may exert a dominant-negative effect by preventing upregulated utrophin protein from reaching the sarcolemmal membrane and thus blocking its partial rescue of muscle function. This unique case may set a lower size limit for similar constructs in potential gene therapy approaches. FUNDING: This work was supported by a grant from MDA USA (MDA3896) and by grant number R01AR051999 from NIAMS/NIH to C.G.B.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Humanos , Distrofina/genética , Distrofina/metabolismo , Utrofina/genética , Utrofina/metabolismo , Utrofina/uso terapêutico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Músculos/metabolismo , Músculos/patologia , Sarcolema/metabolismo , Sarcolema/patologia
11.
bioRxiv ; 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38586035

RESUMO

Collagen VI-related disorders (COL6-RDs) are a group of rare muscular dystrophies caused by pathogenic variants in collagen VI genes (COL6A1, COL6A2, and COL6A3). Collagen type VI is a heterotrimeric, microfibrillar component of the muscle extracellular matrix (ECM), predominantly secreted by resident fibroadipogenic precursor cells in skeletal muscle. The absence or mislocalizatoion of collagen VI in the ECM underlies the non-cell autonomous dysfunction and dystrophic changes in skeletal muscle with an as of yet elusive direct mechanistic link between the ECM and myofiber dysfunction. Here, we conduct a comprehensive natural history and outcome study in a novel mouse model of COL6-RDs (Col6a2-/- mice) using standardized (Treat-NMD) functional, histological, and physiologic parameter. Notably, we identify a conspicuous dysregulation of the TGFß pathway early in the disease process and propose that the collagen VI deficient matrix is not capable of regulating the dynamic TGFß bioavailability at baseline and also in response to muscle injury. Thus, we propose a new mechanism for pathogenesis of the disease that links the ECM regulation of TGFß with downstream skeletal muscle abnormalities, paving the way for developing and validating therapeutics that target this pathway.

12.
J Mol Cell Cardiol ; 52(1): 273-82, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22100229

RESUMO

Remodeling of the cardiac extracellular matrix (ECM) is an integral part of wound healing and ventricular adaptation after myocardial infarction (MI), but the underlying mechanisms remain incompletely understood. Fibulin-2 is an ECM protein upregulated during cardiac development and skin wound healing, yet mice lacking fibulin-2 do not display any identifiable phenotypic abnormalities. To investigate the effects of fibulin-2 deficiency on ECM remodeling after MI, we induced experimental MI by permanent coronary artery ligation in both fibulin-2 null and wild-type mice. Fibulin-2 expression was up-regulated at the infarct border zone of the wild-type mice. Acute myocardial tissue responses after MI, including inflammatory cell infiltration and ECM protein synthesis and deposition in the infarct border zone, were markedly attenuated in the fibulin-2 null mice. However, the fibulin-2 null mice had significantly better survival rate after MI compared to the wild-type mice as a result of less frequent cardiac rupture and preserved left ventricular function. Up-regulation of TGF-ß signaling and ECM remodeling after MI were attenuated in both ischemic and non-ischemic myocardium of the fibulin-2 null mice compared to the wild type counterparts. Increase in TGF-ß signaling in response to angiotensin II was also lessened in cardiac fibroblasts isolated from the fibulin-2 null mice. The studies provide the first evidence that absence of fibulin-2 results in decreased up-regulation of TGF-ß signaling after MI and protects against ventricular dysfunction, suggesting that fibulin-2 may be a potential therapeutic target for attenuating the progression of ventricular remodeling.


Assuntos
Proteínas de Ligação ao Cálcio/deficiência , Proteínas da Matriz Extracelular/deficiência , Infarto do Miocárdio/genética , Remodelação Ventricular/genética , Angiotensina II/farmacologia , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/mortalidade , Miocárdio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Função Ventricular Esquerda , Cicatrização/genética
13.
Ann Neurol ; 69(1): 206-11, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21280092

RESUMO

Two mutational mechanisms are known to underlie Ullrich congenital muscular dystrophy (UCMD): heterozygous dominant negatively-acting mutations and recessively-acting loss-of-function mutations. We describe large genomic deletions on chromosome 21q22.3 as a novel type of mutation underlying recessively inherited UCMD in 2 families. Clinically unaffected parents carrying large genomic deletions of COL6A1and COL6A2also provide conclusive evidence that haploinsufficiency for COL6A1and COL6A2is not a disease mechanism for Bethlem myopathy. Our findings have important implications for the genetic evaluation of patients with collagen VI-related myopathies as well as for potential therapeutic interventions for this patient population.


Assuntos
Mutação/genética , Deleção de Sequência/genética , Células Cultivadas , Pré-Escolar , Mapeamento Cromossômico/estatística & dados numéricos , Cromossomos Humanos Par 21/genética , Colágeno Tipo VI/genética , Análise Mutacional de DNA , Deleção de Genes , Haploinsuficiência/genética , Heterozigoto , Humanos , Lactente , Masculino , Distrofias Musculares/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Esclerose/genética , Análise de Sequência de DNA
14.
J Biol Chem ; 285(13): 10005-10015, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20106987

RESUMO

Ullrich congenital muscular dystrophy (UCMD) is a disabling and life-threatening disorder resulting from either recessive or dominant mutations in genes encoding collagen VI. Although the majority of the recessive UCMD cases have frameshift or nonsense mutations in COL6A1, COL6A2, or COL6A3, recessive structural mutations in the COL6A2 C-globular region are emerging also. However, the underlying molecular mechanisms have remained elusive. Here we identified a homozygous COL6A2 E624K mutation (C1 subdomain) and a homozygous COL6A2 R876S mutation (C2 subdomain) in two UCMD patients. The consequences of the mutations were investigated using fibroblasts from patients and cells stably transfected with the mutant constructs. In contrast to expectations based on the clinical severity of these two patients, secretion and assembly of collagen VI were moderately affected by the E624K mutation but severely impaired by the R876S substitution. The E624K substitution altered the electrostatic potential of the region surrounding the metal ion-dependent adhesion site, resulting in a collagen VI network containing thick fibrils and spots with densely packed microfibrils. The R876S mutation prevented the chain from assembling into triple-helical collagen VI molecules. The minute amount of collagen VI secreted by the R876S fibroblasts was solely composed of a faster migrating chain corresponding to the C2a splice variant with an alternative C2 subdomain. In transfected cells, the C2a splice variant was able to assemble into short microfibrils. Together, the results suggest that the C2a splice variant may functionally compensate for the loss of the normal COL6A2 chain when mutations occur in the C2 subdomain.


Assuntos
Processamento Alternativo , Colágeno Tipo VI/genética , Genes Recessivos , Distrofias Musculares/congênito , Distrofias Musculares/genética , Mutação de Sentido Incorreto , Adulto , Sequência de Aminoácidos , Biópsia , Criança , Colágeno/química , Feminino , Fibroblastos/metabolismo , Homozigoto , Humanos , Íons , Masculino , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
15.
J Clin Invest ; 118(3): 904-12, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18274675

RESUMO

Reducing body myopathy (RBM) is a rare disorder causing progressive muscular weakness characterized by aggresome-like inclusions in the myofibrils. Identification of genes responsible for RBM by traditional genetic approaches has been impossible due to the frequently sporadic occurrence in affected patients and small family sizes. As an alternative approach to gene identification, we used laser microdissection of intracytoplasmic inclusions identified in patient muscle biopsies, followed by nanoflow liquid chromatography-tandem mass spectrometry and proteomic analysis. The most prominent component of the inclusions was the Xq26.3-encoded four and a half LIM domain 1 (FHL1) protein, expressed predominantly in skeletal but also in cardiac muscle. Mutational analysis identified 4 FHL1 mutations in 2 sporadic unrelated females and in 2 families with severely affected boys and less-affected mothers. Transfection of kidney COS-7 and skeletal muscle C2C12 cells with mutant FHL1 induced the formation of aggresome-like inclusions that incorporated both mutant and wild-type FHL1 and trapped other proteins in a dominant-negative manner. Thus, a novel laser microdissection/proteomics approach has helped identify both inherited and de novo mutations in FHL1, thereby defining a new X-linked protein aggregation disorder of muscle.


Assuntos
Corpos de Inclusão/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Musculares/genética , Doenças Musculares/genética , Mutação , Proteômica/métodos , Sequência de Aminoácidos , Doenças Genéticas Ligadas ao Cromossomo X/genética , Peptídeos e Proteínas de Sinalização Intracelular/análise , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas com Domínio LIM , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Musculares/análise , Proteínas Musculares/química , Doenças Musculares/metabolismo , Transfecção
16.
Brain ; 132(Pt 2): 452-64, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19181672

RESUMO

We recently identified the X-chromosomal four and a half LIM domain gene FHL1 as the causative gene for reducing body myopathy, a disorder characterized by progressive weakness and intracytoplasmic aggregates in muscle that exert reducing activity on menadione nitro-blue-tetrazolium (NBT). The mutations detected in FHL1 affected highly conserved zinc coordinating residues within the second LIM domain and lead to the formation of aggregates when transfected into cells. Our aim was to define the clinical and morphological phenotype of this myopathy and to assess the mutational spectrum of FHL1 mutations in reducing body myopathy in a larger cohort of patients. Patients were ascertained via the detection of reducing bodies in muscle biopsy sections stained with menadione-NBT followed by clinical, histological, ultrastructural and molecular genetic analysis. A total of 11 patients from nine families were included in this study, including seven sporadic patients with early childhood onset disease and four familial cases with later onset. Weakness in all patients was progressive, sometimes rapidly so. Respiratory failure was common and scoliosis and spinal rigidity were significant in some of the patients. Analysis of muscle biopsies confirmed the presence of aggregates of FHL1 positive material in all biopsies. In two patients in whom sequential biopsies were available the aggregate load in muscle sections appeared to increase over time. Ultrastructural analysis revealed that cytoplasmic bodies were regularly seen in conjunction with the reducing bodies. The mutations detected were exclusive to the second LIM domain of FHL1 and were found in both sporadic as well as familial cases of reducing body myopathy. Six of the nine mutations affected the crucial zinc coordinating residue histidine 123. All mutations in this residue were de novo and were associated with a severe clinical course, in particular in one male patient (H123Q). Mutations in the zinc coordinating residue cysteine 153 were associated with a milder phenotype and were seen in the familial cases in which the boys were still more severely affected compared to their mothers. We expect the mild end of the spectrum to significantly expand in the future. On the severe end of the spectrum we define reducing body myopathy as a progressive disease with early, but not necessarily congenital onset, distinguishing this condition from the classic essentially non-progressive congenital myopathies.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Musculares/genética , Doenças Musculares/genética , Mutação de Sentido Incorreto , Adulto , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Proteínas com Domínio LIM , Masculino , Microscopia Imunoeletrônica , Músculo Esquelético/patologia , Doenças Musculares/patologia , Linhagem
17.
Ann Clin Transl Neurol ; 6(10): 1980-1988, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509352

RESUMO

OBJECTIVE: To characterize the natural history and clinical features of myopathies caused by mono-allelic, dominantly acting pathogenic variants in COL12A1. METHODS: Patients with dominant COL12A1-related myopathies were characterized by history and clinical examination, muscle imaging, and genetic analysis. Pathogenicity of the variants was assessed by immunostaining patient-derived dermal fibroblast cultures for collagen XII. RESULTS: Four independent families with childhood-onset weakness due to novel, dominantly acting pathogenic variants in COL12A1 were identified. Adult patients exhibited distal-predominant weakness. Three families carried dominantly acting glycine missense variants, and one family had a heterozygous, intragenic, in-frame deletion of exon 52 of COL12A1. All pathogenic variants resulted in increased intracellular retention of collagen XII in patient-derived fibroblasts as well as loss of extracellular, fibrillar collagen XII deposition. Since haploinsufficiency for COL12A1 is largely clinically asymptomatic, we designed and evaluated small interfering RNAs (siRNAs) that specifically target the mutant allele containing the exon 52 deletion. Immunostaining of the patient fibroblasts treated with the siRNA showed a near complete correction of collagen XII staining patterns. INTERPRETATION: This study characterizes a distal myopathy phenotype in adults with dominant COL12A1 pathogenic variants, further defining the phenotypic spectrum and natural history of COL12A1-related myopathies. This work also provides proof of concept of a precision medicine treatment approach by proposing and validating allele-specific knockdown using siRNAs specifically designed to target a patient's dominant COL12A1 disease allele.


Assuntos
Colágeno Tipo XII/genética , Miopatias Distais/genética , Genes Dominantes/genética , RNA Interferente Pequeno/uso terapêutico , Adulto , Idade de Início , Técnicas de Cultura de Células , Pré-Escolar , Feminino , Fibroblastos , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Medicina de Precisão , Estudo de Prova de Conceito , Sequenciamento do Exoma
18.
J Neuropathol Exp Neurol ; 67(2): 144-54, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18219255

RESUMO

Mutations in the extracellular matrix molecule collagen VI underlie the congenital muscular dystrophy types Ullrich and Bethlem. Establishing the origin of collagen VI in muscle is important for understanding the pathophysiology of these diseases and for developing future treatment approaches involving cell-specific delivery. Because the cells that produce collagen VI cannot be identified by histologic analysis, we examined the production of collagen VI in pure cultures of primary myogenic cells and muscle interstitial fibroblasts from limb muscle of neonatal mice. Immunofluorescence staining and Western blot analysis revealed secretion and matrix deposition of collagen VI by interstitial fibroblasts but not by myogenic cells in vitro. Using Northern blot and real-time reverse-transcriptase-polymerase chain reaction analysis for the collagen VI genes col6a1, col6a2, col6a3, transcript levels for the 3 mRNAs were high in interstitial fibroblasts, whereas in primary myogenic cells, they were indistinguishable from background. Furthermore, retention of mutant collagen VI in muscle from 3 patients with collagen VI mutation was identified in interstitial fibroblastic cells but not in their myofibers. These results suggest that interstitial fibroblasts but not myogenic cells contribute significantly to the deposition of collagen VI in the extracellular matrix in skeletal muscle and imply major roles of this cell type and the extracellular matrix in the pathogenesis of these diseases.


Assuntos
Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Fibroblastos/metabolismo , Músculo Esquelético/citologia , Distrofias Musculares/patologia , Mutação , Animais , Animais Recém-Nascidos , Diferenciação Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura/métodos , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Músculo Esquelético/enzimologia , Pele/citologia
19.
Neuromuscul Disord ; 17(1): 28-32, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17134899

RESUMO

Dynamin 2 has recently been recognized as a causative gene for the autosomal dominant form of centronuclear myopathy (dominant centronuclear myopathy). Here we report an affected father and daughter with dynamin 2 related AD CNM with predominantly distal onset of weakness. In addition to the diagnostic central location of myonuclei the muscle biopsy also showed core-like structures. Muscle MRI in the lower leg revealed prominent involvement of the soleus, but also of the gastrocnemius and the tibialis anterior whereas in the thigh there was a consistent pattern of selective involvement of adductor longus, semimembranosus, biceps femoris, rectus femoris, and vastus intermedius with relative sparing of vastus lateralis and medialis, sartorius, gracilis, and partly of the semitendinosus. These characteristic findings on muscle MRI confirm similar findings reported for CT imaging in dynamin 2 related dominant centronuclear myopathy and may help to differentiate this disorder from central core disease and other myopathies.


Assuntos
Dinamina II/genética , Músculo Esquelético/patologia , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Adulto , Dinamina II/metabolismo , Saúde da Família , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação
20.
J Agric Food Chem ; 65(51): 11212-11219, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29199426

RESUMO

Anchovy (Engraulis japonicus) meat (AM) has been shown to promote nonheme iron absorption via a ferric oxyhydroxide nanoparticle (FeONP)-mediated mechanism. Here, formulation modifications of an egg-white-based AIN-93G diet with AM fractions resulted hemoglobin regeneration efficiencies in anemic rats following an order control (23.69 ± 3.99%) < ferrous-sulfate-replacement of ferric citrate (39.89 ± 2.97%) ≈ dehemeed-AM-protein-replacement of egg white (45.88 ± 4.76%) ≈ AM-lipid-replacement of soybean oil (43.14 ± 3.48%) ≈ chondroitin-sulfate-replacement of ∼2.5% corn starch (39.92 ± 1.88%) < l-α-phosphatidylcholine-replacement of ∼29% soybean oil (53.42 ± 2.04%), with nanosized iron enriched in proximal-small-intestinal contents by these AM fractions. The calcein-fluorescence-quenching assay in polarized Caco-2 cells revealed good iron absorption from FeONPs coated with AM peptides, l-α-phosphatidylcholine, l-α-lysophosphatidylcholine, and chondroitin sulfate, with the latter two disfavoring endocytosis thereby inducing relatively weaker iron absorption. These results suggest peptides, phospholipids, and mucopolysaccharides released during AM digestion are key factors promoting nonheme iron absorption.


Assuntos
Anemia/dietoterapia , Ferro/metabolismo , Carne/análise , Animais , Células CACO-2 , Digestão , Feminino , Compostos Férricos/metabolismo , Peixes , Heme/metabolismo , Hemoglobinas/metabolismo , Humanos , Nanopartículas/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA