Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genome Biol ; 24(1): 166, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443062

RESUMO

BACKGROUND: The oocyte-to-embryo transition (OET) converts terminally differentiated gametes into a totipotent embryo and is critically controlled by maternal mRNAs and proteins, while the genome is silent until zygotic genome activation. How the transcriptome, translatome, and proteome are coordinated during this critical developmental window remains poorly understood. RESULTS: Utilizing a highly sensitive and quantitative mass spectrometry approach, we obtain high-quality proteome data spanning seven mouse stages, from full-grown oocyte (FGO) to blastocyst, using 100 oocytes/embryos at each stage. Integrative analyses reveal distinct proteome reprogramming compared to that of the transcriptome or translatome. FGO to 8-cell proteomes are dominated by FGO-stockpiled proteins, while the transcriptome and translatome are more dynamic. FGO-originated proteins frequently persist to blastocyst while corresponding transcripts are already downregulated or decayed. Improved concordance between protein and translation or transcription is observed for genes starting translation upon meiotic resumption, as well as those transcribed and translated only in embryos. Concordance between protein and transcription/translation is also observed for proteins with short half-lives. We built a kinetic model that predicts protein dynamics by incorporating both initial protein abundance in FGOs and translation kinetics across developmental stages. CONCLUSIONS: Through integrative analyses of datasets generated by ultrasensitive methods, our study reveals that the proteome shows distinct dynamics compared to the translatome and transcriptome during mouse OET. We propose that the remarkably stable oocyte-originated proteome may help save resources to accommodate the demanding needs of growing embryos. This study will advance our understanding of mammalian OET and the fundamental principles governing gene expression.


Assuntos
Proteoma , Transcriptoma , Animais , Camundongos , Proteoma/metabolismo , Embrião de Mamíferos/metabolismo , Blastocisto/metabolismo , Oócitos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/metabolismo
2.
Science ; 378(6615): abo7923, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36074823

RESUMO

Translational regulation plays a critical role during the oocyte-to-embryo transition (OET) and zygotic genome activation (ZGA). Here, we integrated ultra-low-input ribosome profiling (Ribo-lite) with messenger RNA sequencing to co-profile the translatome and transcriptome in human oocytes and early embryos. Comparison with mouse counterparts identified widespread differentially translated gene functioning in epigenetic reprogramming, transposon defense, and small RNA biogenesis, in part driven by species-specific regulatory elements in 3' untranslated regions. Moreover, PRD-like homeobox transcription factors, including TPRXL, TPRX1, and TPRX2, are highly translated around ZGA. TPRX1/2/L knockdown leads to defective ZGA and preimplantation development. Ectopically expressed TPRXs bind and activate key ZGA genes in human embryonic stem cells. These data reveal the conservation and divergence of translation landscapes during OET and identify critical regulators of human ZGA.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição , Transcriptoma , Zigoto , Regiões 3' não Traduzidas , Desenvolvimento Embrionário/genética , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zigoto/metabolismo
3.
Nat Cell Biol ; 24(6): 968-980, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35697785

RESUMO

In mammals, translational control plays critical roles during oocyte-to-embryo transition (OET) when transcription ceases. However, the underlying regulatory mechanisms remain challenging to study. Here, using low-input Ribo-seq (Ribo-lite), we investigated translational landscapes during OET using 30-150 mouse oocytes or embryos per stage. Ribo-lite can also accommodate single oocytes. Combining PAIso-seq to interrogate poly(A) tail lengths, we found a global switch of translatome that closely parallels changes of poly(A) tails upon meiotic resumption. Translation activation correlates with polyadenylation and is supported by polyadenylation signal proximal cytoplasmic polyadenylation elements (papCPEs) in 3' untranslated regions. By contrast, translation repression parallels global de-adenylation. The latter includes transcripts containing no CPEs or non-papCPEs, which encode many transcription regulators that are preferentially re-activated before zygotic genome activation. CCR4-NOT, the major de-adenylation complex, and its key adaptor protein BTG4 regulate translation downregulation often independent of RNA decay. BTG4 is not essential for global de-adenylation but is required for selective gene de-adenylation and production of very short-tailed transcripts. In sum, our data reveal intimate interplays among translation, RNA stability and poly(A) tail length regulation underlying mammalian OET.


Assuntos
Desenvolvimento Embrionário , Oócitos , Regiões 3' não Traduzidas/genética , Animais , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Oócitos/metabolismo , Poliadenilação , Biossíntese de Proteínas , RNA Mensageiro/genética
4.
Cell Res ; 30(11): 980-996, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32581343

RESUMO

Mitotic inheritance of the DNA methylome is a challenging task for the maintenance of cell identity. Whether DNA methylation pattern in different genomic contexts can all be faithfully maintained is an open question. A replication-coupled DNA methylation maintenance model was proposed decades ago, but some observations suggest that a replication-uncoupled maintenance mechanism exists. However, the capacity and the underlying molecular events of replication-uncoupled maintenance are unclear. By measuring maintenance kinetics at the single-molecule level and assessing mutant cells with perturbation of various mechanisms, we found that the kinetics of replication-coupled maintenance are governed by the UHRF1-Ligase 1 and PCNA-DNMT1 interactions, whereas nucleosome occupancy and the interaction between UHRF1 and methylated H3K9 specifically regulate replication-uncoupled maintenance. Surprisingly, replication-uncoupled maintenance is sufficiently robust to largely restore the methylome when replication-coupled maintenance is severely impaired. However, solo-WCGW sites and other CpG sites displaying aging- and cancer-associated hypomethylation exhibit low maintenance efficiency, suggesting that although quite robust, mitotic inheritance of methylation is imperfect and that this imperfection may contribute to selective hypomethylation during aging and tumorigenesis.


Assuntos
Envelhecimento/genética , Metilação de DNA/genética , Padrões de Herança/genética , Mitose/genética , Animais , Proteínas Estimuladoras de Ligação a CCAAT/química , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Carcinogênese/patologia , Ilhas de CpG/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Replicação do DNA/genética , Genoma Humano , Células HeLa , Histonas/metabolismo , Humanos , Cinética , Lisina/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Nucleossomos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Domínios Proteicos , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
5.
Synth Syst Biotechnol ; 3(3): 196-203, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30345405

RESUMO

Due to the abuse of antibiotics, antibiotic residues can be detected in both natural environment and various industrial products, posing threat to the environment and human health. Here we describe the design and implementation of an engineered Escherichia coli capable of degrading tetracycline (Tc)-one of the commonly used antibiotics once on humans and now on poultry, cattle and fisheries. A Tc-degrading enzyme, TetX, from the obligate anaerobe Bacteroides fragilis was cloned and recombinantly expressed in E. coli and fully characterized, including its K m and k cat value. We quantitatively evaluated its activity both in vitro and in vivo by UV-Vis spectrometer and LC-MS. Moreover, we used a tetracycline inducible amplification circuit including T7 RNA polymerase and its specific promoter PT7 to enhance the expression level of TetX, and studied the dose-response of TetX under different inducer concentrations. Since the deployment of genetically modified organisms (GMOs) outside laboratory brings about safety concerns, it is necessary to explore the possibility of integrating a kill-switch. Toxin-Antitoxin (TA) systems were used to construct a mutually dependent host-plasmid platform and biocontainment systems in various academic and industrious situations. We selected nine TA systems from various bacteria strains and measured the toxicity of toxins (T) and the detoxifying activity of cognate antitoxins (A) to validate their potential to be used to build a kill-switch. These results prove the possibility of using engineered microorganisms to tackle antibiotic residues in environment efficiently and safely.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA