Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400288, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012272

RESUMO

Two model substrates for the grafting to reaction are considered: not-deglazed silicon, whose surface is coated by a thin oxide layer with reactive silanol groups on its surface; and deglazed silicon, where the oxide layer is removed by treatment with hydrofluoric acid. The reactive polymers are hydroxy-terminated polystyrenes with molecular weights ranging from 3.9 to 13.9 kg mol⁻1. The grafting to reaction is carried out at different temperatures and for different periods of time on the two different substrates. The thickness and the thermal stability of the resulting brushes are evaluated. Furthermore, the grafting of a highly dispersed system is simulated by blending two polymers with different molecular weights. Although the brush thickness growth is found to be faster on deglazed silicon, the preferential grafting of short chains occurs with equal chain selection propensity on both substrates.

2.
Cell Mol Life Sci ; 80(4): 93, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36929461

RESUMO

Multicellular tumor spheroids are rapidly emerging as an improved in vitro model with respect to more traditional 2D culturing. Microwell culturing is a simple and accessible method for generating a large number of uniformly sized spheroids, but commercially available systems often do not enable researchers to perform complete culturing and analysis pipelines and the mechanical properties of their culture environment are not commonly matching those of the target tissue. We herein report a simple method to obtain custom-designed self-built microwell arrays made of polydimethylsiloxane or agarose for uniform 3D cell structure generation. Such materials can provide an environment of tunable mechanical flexibility. We developed protocols to culture a variety of cancer and non-cancer cell lines in such devices and to perform molecular and imaging characterizations of the spheroid growth, viability, and response to pharmacological treatments. Hundreds of tumor spheroids grow (in scaffolded or scaffold-free conditions) at homogeneous rates and can be harvested at will. Microscopy imaging can be performed in situ during or at the end of the culture. Fluorescence (confocal) microscopy can be performed after in situ staining while retaining the geographic arrangement of spheroids in the plate wells. This platform can enable statistically robust investigations on cancer biology and screening of drug treatments.


Assuntos
Neoplasias , Esferoides Celulares , Humanos , Linhagem Celular , Linhagem Celular Tumoral
3.
Anal Bioanal Chem ; 410(20): 4943-4952, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29934852

RESUMO

DNA methylation catalyzed by DNA methyl transferase (MTase) is a significant epigenetic process for modulating gene expression. Abnormal levels of DNA MTase enzyme have been regarded as a cancer biomarker or a sign of bacterial diseases. We developed a novel colorimetric method to assay M.SssI MTase activity employing peroxidase-like activity of DNA template Ag/Pt NCs without using restriction enzymes. Based on inhibiting the peroxidase reaction that occurred in the TMB-H2O2 system, in the presence of MTase, a highly sensitive and selective colorimetric biosensor was fabricated with a detection limit (LOD) of 0.05 U/mL and a linear range from 0.5 to 10 U/mL. The changes in absorption intensity were monitored to quantify the M.SssI activity. This strategy had a high selectivity over other proteins. Furthermore, it is also demonstrated that this method can be used for the evaluation and screening of inhibitors for DNA MTase.


Assuntos
Colorimetria/métodos , Metilases de Modificação do DNA/metabolismo , DNA/metabolismo , Nanoestruturas/química , Peroxidases/metabolismo , Platina/química , Prata/química , Técnicas Biossensoriais , Colorimetria/economia , Análise Custo-Benefício , DNA/química , Limite de Detecção , Espectrometria por Raios X , Espectrofotometria Ultravioleta
4.
iScience ; 26(10): 108032, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37822492

RESUMO

Growing antibiotic resistance has encouraged the revival of phage-inspired antimicrobial approaches. On the other hand, photodynamic therapy (PDT) is considered a very promising research domain for the protection against infectious diseases. Yet, very few efforts have been made to combine the advantages of both approaches in a modular, retargetable platform. Here, we foster the M13 bacteriophage as a multifunctional scaffold, enabling the selective photodynamic killing of bacteria. We took advantage of the well-defined molecular biology of M13 to functionalize its capsid with hundreds of photo-activable Rose Bengal sensitizers and contemporarily target this light-triggerable nanobot to specific bacterial species by phage display of peptide targeting moieties fused to the minor coat protein pIII of the phage. Upon light irradiation of the specimen, the targeted killing of diverse Gram(-) pathogens occurred at subnanomolar concentrations of the phage vector. Our findings contribute to the development of antimicrobials based on targeted and triggerable phage-based nanobiotherapeutics.

5.
Eur J Pharm Biopharm ; 180: 190-200, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36210035

RESUMO

The aim of this work was to develop novel chitosan (CH) based nanoparticles (NPs) for rifampicin (RIF) delivery. RIF, a lipophilic molecule, was incorporated inside NPs as a complex with an anionic cyclodextrin, sulphobutyl-ether-ß-cyclodextrin (SBE-ß-CD). NPs were then prepared through the ionic gelation method by exploiting the interaction between CH and SBE-ß-CD-RIF complex (CH/SBE-ß-CD-RIF NPs), possibly in the presence of other crosslinkers, like carboxymethylcellulose (CH/SBE-ß-CD-RIF/CMC NPs) and pentasodium tripolyphosphate (CH/SBE-ß-CD-RIF/TPP NPs). NPs were then characterized for their size, ζ-potential, morphology, yield, drug loading, stability, mucoadhesion, in vitro drug release and antimicrobial activity. Results demonstrated that the functional properties of loaded NPs, like their size, ζ-potential, and stability, varied on the basis of the CH/crosslinker weight ratio. Interestingly, all the developed NPs had a round shape and were characterized by high yield values and mucoadhesive properties. Among them, NPs based on CH/SBE-ß-CD-RIF and CH/SBE-ß-CD-RIF/CMC have gained high drug loading, provided a sustained release of RIF and showed the best antimicrobial activity. Thus, both types of NPs may be considered as promising nanocarriers for the release of RIF.


Assuntos
Anti-Infecciosos , Quitosana , Ciclodextrinas , Nanopartículas , Rifampina/farmacologia , Polímeros , Portadores de Fármacos , Tamanho da Partícula
6.
Biology (Basel) ; 11(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36138837

RESUMO

Prion diseases are neurodegenerative disorders characterized by the presence of oligomers and amyloid fibrils. These are the result of protein aggregation processes of the cellular prion protein (PrPC) into amyloidal forms denoted as prions or PrPSc. We employed atomic force microscopy (AFM) for single molecule pulling (single molecule force spectroscopy, SMFS) experiments on the recombinant truncated murine prion protein (PrP) domain to characterize its conformations and potential initial oligomerization processes. Our AFM-SMFS results point to a complex scenario of structural heterogeneity of PrP at the monomeric and dimer level, like other amyloid proteins involved in similar pathologies. By applying this technique, we revealed that the PrP C-terminal domain unfolds in a two-state process. We used two dimeric constructs with different PrP reciprocal orientations: one construct with two sequential PrP in the N- to C-terminal orientation (N-C dimer) and a second one in the C- to C-terminal orientation (C-C dimer). The analysis revealed that the different behavior in terms of unfolding force, whereby the dimer placed C-C dimer unfolds at a higher force compared to the N-C orientation. We propose that the C-C dimer orientation may represent a building block of amyloid fibril formation.

7.
Nanoscale ; 14(3): 632-641, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34792088

RESUMO

Photodynamic therapy (PDT) represents a promising therapeutic modality for cancer. Here we used an orthogonal nanoarchitectonics approach (genetic/chemical) to engineer M13 bacteriophages as targeted vectors for efficient photodynamic killing of cancer cells. M13 was genetically refactored to display on the phage tip a peptide (SYPIPDT) able to bind the epidermal growth factor receptor (EGFR). The refactored M13EGFR phages demonstrated EGFR-targeted tropism and were internalized by A431 cancer cells, that overexpress EGFR. Using an orthogonal approach to the genetic display, M13EGFR phages were then chemically modified, conjugating hundreds of Rose Bengal (RB) photosensitizing molecules on the capsid surface, without affecting the selective recognition of the SYPIPDT peptides. Upon internalization, the M13EGFR-RB derivatives generated intracellularly reactive oxygen species, activated by an ultralow intensity white light irradiation. The killing activity of cancer cells is observed at picomolar concentrations of the M13EGFR phage.


Assuntos
Neoplasias , Fotoquimioterapia , Bacteriófago M13/genética , Proteínas do Capsídeo/genética , Humanos , Neoplasias/tratamento farmacológico , Peptídeos
8.
Biomolecules ; 11(2)2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670563

RESUMO

Microglial cells, the immune cells of the central nervous system (CNS), play a crucial role for the proper brain development and function and in CNS homeostasis. While in physiological conditions, microglia continuously check the state of brain parenchyma, in pathological conditions, microglia can show different activated phenotypes: In the early phases, microglia acquire the M2 phenotype, increasing phagocytosis and releasing neurotrophic and neuroprotective factors. In advanced phases, they acquire the M1 phenotype, becoming neurotoxic and contributing to neurodegeneration. Underlying this phenotypic change, there is a switch in the expression of specific microglial genes, in turn modulated by epigenetic changes, such as DNA methylation, histones post-translational modifications and activity of miRNAs. New roles are attributed to microglial cells, including specific communication with neurons, both through direct cell-cell contact and by release of many different molecules, either directly or indirectly, through extracellular vesicles. In this review, recent findings on the bidirectional interaction between neurons and microglia, in both physiological and pathological conditions, are highlighted, with a focus on the complex field of microglia immunomodulation through epigenetic mechanisms and/or released factors. In addition, advanced technologies used to study these mechanisms, such as microfluidic, 3D culture and in vivo imaging, are presented.


Assuntos
Epigênese Genética/genética , Microglia/metabolismo , Animais , Metilação de DNA/genética , Exossomos/genética , Humanos , MicroRNAs/genética , Microfluídica , Processamento de Proteína Pós-Traducional/genética
9.
Biosens Bioelectron ; 167: 112465, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32798803

RESUMO

The dysregulation of the concentration of individual circulating microRNAs or small sets of them has been recognized as a marker of disease. For example, an increase of the concentration of circulating miR-17 has been linked to lung cancer and metastatic breast cancer, while its decrease has been found in multiple sclerosis and gastric cancer. Consequently, techniques for the fast, specific and simple quantitation of microRNAs are becoming crucial enablers of early diagnosis and therapeutic follow-up. DNA based biosensors can serve this purpose, overcoming some of the drawbacks of conventional lab-based techniques. Herein, we report a cost-effective, simple and robust biosensor based on localized surface plasmon resonance and hybridization chain reaction. Immobilized gold nanoparticles are used for the detection of miR-17. Specificity of the detection was achieved by the use of hairpin surface-tethered probes and the hybridization chain reaction was used to amplify the detection signal and thus extend the dynamic range of the quantitation. Less than 1 h is needed for the entire procedure that achieved a limit of detection of about 1 pM or 50 amol/measurement, well within the reported useful range for diagnostic applications. We suggest that this technology could be a promising substitute of traditional lab-based techniques for the detection and quantification of miRNAs after these are extracted from diagnostic specimens and their analysis is thus made possible.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Ouro , Limite de Detecção , MicroRNAs/genética , Hibridização de Ácido Nucleico , Ressonância de Plasmônio de Superfície
10.
Eur J Pharm Sci ; 131: 136-145, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30771474

RESUMO

The aim of this work was to prepare new mucoadhesive nasal decongestant nanoparticles obtained by direct crosslinking between the cationic polymer chitosan and the anionic drug cromolyn. Different chitosan/cromolyn molar ratios were used in order to obtain nanoparticles of suitable size, encapsulation efficiency/drug loading and mucoadhesion. Moreover, the ability of the nanoparticles to deliver cromolyn into and through the nasal mucosa was evaluated. The obtained positively charged nanoparticles, sized 180-400 nm, showed interesting properties in terms of yield, mucoadhesion, encapsulation efficiency and drug loading. Release and permeation/penetration data indicated the ability of the nanoparticles to retain a high amount of cromolyn inside the mucosa, which is rich in mast cells. These findings suggest developing decongestant nanoparticles for potential treatment of allergic rhinitis.


Assuntos
Antialérgicos/química , Quitosana/química , Cromolina Sódica/química , Nanopartículas/química , Adesividade , Animais , Antialérgicos/administração & dosagem , Quitosana/administração & dosagem , Cromolina Sódica/administração & dosagem , Liberação Controlada de Fármacos , Nanopartículas/administração & dosagem , Mucosa Nasal/metabolismo , Permeabilidade , Rinite Alérgica/tratamento farmacológico , Ovinos
11.
Colloids Surf B Biointerfaces ; 181: 149-157, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31128515

RESUMO

Whey-derived alpha-casozepine bioactive peptide (YLGYLEQLLR) was associated with previously optimized guar-gum film-PLGA nanoparticles, aiming to increase both stability across gastrointestinal tract and permeability across absorptive epithelia. Oral films associated with nanoparticles (FNp) enhance buccal absorption along with protection of carried bioactive molecules that are swallowed, with inherent increase of bioavailability. None of developed formulations induced significant loss of cell viability. Permeability across both buccal and intestinal cell barriers was enhanced when alpha-casozepine was carried by FNp system, when compared with film and nanoparticles alone, in a simulated gastrointestinal tract environment. Moreover, differences in permeability profile across buccal and intestinal epithelia were in accordance with the slower erosion of PLGA nanoparticles in a media of neutral pH, resembling oral cavity conditions, and a faster erosion in acidic conditions, as occurs in stomach, as observed by a continuous analysis of nanoparticle morphology over 980 min by atomic force microscopy. Additionally, apparent permeability of alpha-casozepine across TR146 human buccal carcinoma cells and Caco-2/HT29-MTX co-culture, carried by FNp was indeed superior when compared with peptide loaded in PLGA nanoparticles and in films alone or with free peptide control solution. Both FNp and PLGA nanoparticles alone enhanced the permeability of relaxing peptide compared with guar-gum films alone. An increased tongue adhesion when PLGA nanoparticles were added to the guar-gum films was also observed. Developed formulations improved both buccal an intestinal absorption of carried bioactive molecules without compromising cell viability.


Assuntos
Caseínas/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Fragmentos de Peptídeos/química , Ácido Poliglicólico/química , Administração Oral , Caseínas/administração & dosagem , Caseínas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Humanos , Mitocôndrias/efeitos dos fármacos , Nanopartículas/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/farmacologia , Ácido Poliglicólico/administração & dosagem , Relação Estrutura-Atividade , Células Tumorais Cultivadas
12.
Methods Mol Biol ; 1811: 115-135, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29926449

RESUMO

DNA biosensors could overcome some of the common drawbacks of lab-based techniques for nucleic acids detection for diagnostics purposes. One of the main impediments for such applications of DNA biosensors is their lack of sensitivity: this can prevent their full exploitation in the diagnostic analytical field. DNA nanotechnology could enhance DNA biosensors and let them perform at the required high sensitivity. Well-designed, programmable self-assembly reactions can be triggered by a specific nucleic acid target. The Hybridization Chain Reaction (HCR) is a self-assembly strategy in which the target nucleic acid sequence triggers the formation of long nicked double-stranded DNA nanostructures. This can be performed in solution or on a surface, and the process can be coupled to different signal transduction schemes. We here describe the methods to design and test HCR reactions for the detection of different nucleic acid targets in solution and the procedures to exploit this strategy on surfaces with an electrochemical biosensing platform.


Assuntos
Técnicas Biossensoriais/métodos , DNA/análise , Hibridização de Ácido Nucleico/métodos , Limite de Detecção , Nanotecnologia , Conformação de Ácido Nucleico , Propriedades de Superfície
13.
Biochim Biophys Acta Mol Basis Dis ; 1864(12): 3771-3785, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30315929

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. Mutations in the gene encoding copper/zinc superoxide dismutase-1 (SOD1) are responsible for most familiar cases, but the role of mutant SOD1 protein dysfunction in non-cell autonomous neurodegeneration, especially in relation to microglial activation, is still unclear. Here, we focused our study on microglial cells, which release SOD1 also through exosomes. We observed that in rat primary microglia the overexpression of the most-common SOD1 mutations linked to fALS (G93A and A4V) leads to SOD1 intracellular accumulation, which correlates to autophagy dysfunction and microglial activation. In primary contact co-cultures, fALS mutant SOD1 overexpression by microglial cells appears to be neurotoxic by itself. Treatment with the autophagy-inducer trehalose reduced mutant SOD1 accumulation in microglial cells, decreased microglial activation and abrogated neurotoxicity in the co-culture model. These data suggest that i) the alteration of the autophagic pathway due to mutant SOD1 overexpression is involved in microglial activation and neurotoxicity; ii) the induction of autophagy with trehalose reduces microglial SOD1 accumulation through proteasome degradation and activation, leading to neuroprotection. Our results provide a novel contribution towards better understanding key cellular mechanisms in non-cell autonomous ALS neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/genética , Autofagia , Microglia/patologia , Mutação Puntual , Superóxido Dismutase-1/genética , Regulação para Cima , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/patologia , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Mutação Puntual/efeitos dos fármacos , Ratos , Ratos Wistar , Trealose/farmacologia , Regulação para Cima/efeitos dos fármacos
14.
ACS Nano ; 12(7): 7076-7085, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29952543

RESUMO

We investigated the dewetting process on flat and chemically patterned surfaces of ultrathin films (thickness between 2 and 15 nm) of a cylinder forming polystyrene- block-poly(methyl methacrylate) (PS- b-PMMA) spin coated on poly(styrene- r-methyl methacrylate) random copolymers (RCPs). When the PS- b-PMMA film dewets on a 2 nm-thick RCP layer, the ordering of the hexagonally packed PMMA cylinders in the dewetted structures extends over distances far exceeding the correlation length obtained in continuous block copolymer (BCP) films. As a result, micrometer-sized circular droplets featuring defectless single grains of self-assembled PS- b-PMMA with PMMA cylinders perpendicularly oriented with respect to the substrate are generated and randomly distributed on the substrate. Additionally, alignment of the droplets along micrometric lines was achieved by performing the dewetting process on large-scale chemically patterned stripes of 2 nm thick RCP films by laser lithography. By properly adjusting the periodicity of the chemical pattern, it was possible to tune and select the geometrical characteristics of the dewetted droplets in terms of maximum thickness, contact angle and diameter while maintaining the defectless single grain perpendicular cylinder morphology of the circular droplets.

15.
J Med Chem ; 61(17): 7640-7656, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30078314

RESUMO

Several findings propose the altered tau protein network as an important target for Alzheimer's disease (AD). Particularly, two points of pharmacological intervention can be envisaged: inhibition of phosphorylating tau kinase GSK-3ß and tau aggregation process. On the basis of this consideration and on our interest in multitarget paradigms in AD, we report on the discovery of 2,4-thiazolidinedione derivatives endowed with such a profile. 28 and 30 displayed micromolar IC50 values toward GSK-3ß, together with the capacity of inhibiting AcPHF6 aggregation of 60% and 80% at 10 µM, respectively. In addition, they showed PAMPA-BBB permeability, together with a suitable cellular safety profile. 30 also displayed inhibition of both K18 and full-length tau aggregations. Finally, both compounds were able to improve cell viability in an okadaic acid-induced neurodegeneration cell model. To the best of our knowledge, 28 and 30 are the first balanced, nontoxic, dual-acting compounds hitting tau cascade at two different hubs.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas tau/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Fármacos do Sistema Nervoso Central/efeitos adversos , Fármacos do Sistema Nervoso Central/química , Fármacos do Sistema Nervoso Central/farmacologia , Dicroísmo Circular , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Transferência Ressonante de Energia de Fluorescência , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Células Hep G2 , Humanos , Microscopia de Força Atômica , Terapia de Alvo Molecular/métodos , Ácido Okadáico/toxicidade , Fosforilação/efeitos dos fármacos , Ratos , Relação Estrutura-Atividade , Suínos , Tiazolidinedionas/química , Proteínas tau/antagonistas & inibidores
16.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 777-787, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27770955

RESUMO

In this study, composite nanofibrous scaffolds were obtained by electrospinning a trifluoroacetic acid solution containing B. mori silk fibroin (SF) and poly(l-lactic acid) (PLLA) in a 1:1 weight ratio. SF, PLLA and SF/PLLA nanofibres were prepared with average diameter sizes of 360±90nm, 470±240nm and 580±220nm, respectively, as assessed by SEM analysis. Vibrational and thermal analyses showed that upon blending in the SF/PLLA nanofibres, the crystallisation of PLLA was hindered by the presence of SF, which crystallized preferentially and underwent conformational changes that did not significantly change its prevailing ß-sheet structure. The two components were thermodynamically compatible and the intermolecular interactions between them were revealed for the first time. Human keratinocytes were cultured on nanofibres and their viability and proliferation were determined. Preliminary in vitro tests showed that the incorporation of SF into the PLLA component enhanced cell adhesion and proliferation with respect to the unfunctionalised material. SF has been successfully used to modify the biomaterial properties and confirmed to be an efficient bioactive protein to mediate cell-biomaterial interaction.


Assuntos
Bombyx/química , Fibroínas/farmacologia , Nanofibras/química , Poliésteres/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Microscopia de Força Atômica , Nanofibras/ultraestrutura , Pós , Espectrofotometria Infravermelho , Análise Espectral Raman , Temperatura , Vibração
17.
Trends Biotechnol ; 24(5): 235-43, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16542743

RESUMO

The self-assembly of oligodeoxynucleotides is a versatile and powerful tool for the construction of objects in the nanoscale. The strictly information-driven pairing of DNA fragments can be used to rationally design and build nanostructures with planned topologies and geometries. Taking advantage of the steadily expanding library of well-characterized DNA motifs, several examples of structures with different dimensionalities have appeared in the literature in the past few years, laying the foundations for a promising DNA-mediated, bottom-up approach to nanotechnology. This article focuses on recent developments in this area of research and proposes a classification of DNA nanostructures based on topological considerations in addition to describing strategies for tackling the inherent complexities of such an endeavor.


Assuntos
Cristalização/métodos , DNA/química , DNA/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Sítios de Ligação , Substâncias Macromoleculares/química , Modelos Químicos , Modelos Moleculares , Nanotecnologia/tendências , Conformação de Ácido Nucleico
18.
Colloids Surf B Biointerfaces ; 145: 362-372, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27214786

RESUMO

The aim of this study was to develop chitosan-based nanoparticles that could encapsulate lipophilic molecules and deliver them to cancer cells. Nanoparticles were prepared with different molar ratios of chitosan, hyaluronic acid and sulphobutyl-ether-ß-cyclodextrin and with or without curcumin. The nanosystems were characterized in terms of their size, zeta potential, morphology, encapsulation efficiency and stability in different media. Intestinal epithelial and colorectal cancer cells were treated with unloaded nanoparticles in order to study their effect on cellular membrane organization and ROS production. Finally, in vitro assays on both cellular lines were performed in order to evaluate the ability of nanoparticles to promote curcumin internalization and to study their effect on cell proliferation and cell cycle. Results show that nanoparticles were positively charged and their size increased with the increasing amounts of the anionic excipient. Nanoparticles showed good encapsulation efficiency and stability in water. Unloaded nanoparticles led to a change in lipid organization in the cellular membrane of both cell lines, without inducing ROS generation. Confocal microscopy, cell proliferation and cell cycle studies allowed the selection of the best formulation to limit curcumin cytotoxicity in normal intestinal epithelial cells and to reduce cancer cell proliferation. The latter was the result of the increase of expression for genes involved in apoptosis.


Assuntos
Antineoplásicos/química , Quitosana/química , Curcumina/química , Curcumina/farmacologia , Nanopartículas/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Curcumina/efeitos adversos , Células HT29 , Humanos , Microscopia Confocal
19.
Angew Chem Int Ed Engl ; 44(8): 1166-81, 2005 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-15532060

RESUMO

The nanometer scale is a special place where all sciences meet and develop a particularly strong interdisciplinarity. While biology is a source of inspiration for nanoscientists, chemistry has a central role in turning inspirations and methods from biological systems to nanotechnological use. DNA is the biological molecule by which nanoscience and nanotechnology is mostly fascinated. Nature uses DNA not only as a repository of the genetic information, but also as a controller of the expression of the genes it contains. Thus, there are codes embedded in the DNA sequence that serve to control recognition processes on the atomic scale, such as the base pairing, and others that control processes taking place on the nanoscale. From the chemical point of view, DNA is the supramolecular building block with the highest informational content. Nanoscience has therefore the opportunity of using DNA molecules to increase the level of complexity and efficiency in self-assembling and self-directing processes.


Assuntos
DNA/química , Nanotecnologia , Pareamento de Bases , Conformação de Ácido Nucleico
20.
Chem Biol ; 9(12): 1315-21, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12498884

RESUMO

Scanning force microscopy was used to study in fluid the conformational fluctuations of two double-stranded DNA molecules resulting from differently cut pBR322 circular DNAs. A new approach was conceived to monitor the thermodynamic equilibrium of the chain dynamics on different scale lengths. This method made it possible to demonstrate that both the observed DNA molecules were allowed to equilibrate only on their local small-scale dynamics during the time of the experiment. This capability of monitoring the length scale and the time scale of the equilibration processes in the dynamics of a DNA chain is relevant to give an insight in the thermodynamics of the DNA binding with proteins and synthetic ligands. It was also shown that the small-scale equilibration of the DNA chain during surface-restricted dynamics is enough to allow a valid measurement of the local sequence-dependent curvature.


Assuntos
DNA/química , Microscopia de Força Atômica , Sequência de Bases , DNA Circular , Processamento de Imagem Assistida por Computador , Movimento (Física) , Conformação de Ácido Nucleico , Termodinâmica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA