Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Methods ; 21(5): 809-813, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605111

RESUMO

Neuroscience is advancing standardization and tool development to support rigor and transparency. Consequently, data pipeline complexity has increased, hindering FAIR (findable, accessible, interoperable and reusable) access. brainlife.io was developed to democratize neuroimaging research. The platform provides data standardization, management, visualization and processing and automatically tracks the provenance history of thousands of data objects. Here, brainlife.io is described and evaluated for validity, reliability, reproducibility, replicability and scientific utility using four data modalities and 3,200 participants.


Assuntos
Computação em Nuvem , Neurociências , Neurociências/métodos , Humanos , Neuroimagem/métodos , Reprodutibilidade dos Testes , Software , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem
3.
JAMA Netw Open ; 7(2): e2354235, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38300622

RESUMO

Importance: Recurring exposure to head impacts in American football has garnered public and scientific attention, yet neurobiological associations in adolescent football players remain unclear. Objective: To examine cortical structure and neurophysiological characteristics in adolescent football players. Design, Setting, and Participants: This cohort study included adolescent football players and control athletes (swimming, cross country, and tennis) from 5 high school athletic programs, who were matched with age, sex (male), and school. Neuroimaging assessments were conducted May to July of the 2021 and 2022 seasons. Data were analyzed from February to November 2023. Exposure: Playing tackle football or noncontact sports. Main Outcomes and Measures: Structural magnetic resonance imaging (MRI) data were analyzed for cortical thickness, sulcal depth, and gyrification, and cortical surface-based resting state (RS)-functional MRI analyses examined the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and RS-functional connectivity (RS-FC). Results: Two-hundred seventy-five male participants (205 football players; mean [SD] age, 15.8 [1.2] years; 5 Asian [2.4%], 8 Black or African American [3.9%], and 189 White [92.2%]; 70 control participants; mean [SD] age 15.8 [1.2] years, 4 Asian [5.7], 1 Black or African American [1.4%], and 64 White [91.5%]) were included in this study. Relative to the control group, the football group showed significant cortical thinning, especially in fronto-occipital regions (eg, right precentral gyrus: t = -2.24; P = .01; left superior frontal gyrus: -2.42; P = .002). Elevated cortical thickness in football players was observed in the anterior and posterior cingulate cortex (eg, left posterior cingulate cortex: t = 2.28; P = .01; right caudal anterior cingulate cortex 3.01; P = .001). The football group had greater and deeper sulcal depth than the control groups in the cingulate cortex, precuneus, and precentral gyrus (eg, right inferior parietal lobule: t = 2.20; P = .004; right caudal anterior cingulate cortex: 4.30; P < .001). Significantly lower ALFF was detected in the frontal lobe and cingulate cortex of the football group (t = -3.66 to -4.92; P < .01), whereas elevated ALFF was observed in the occipital regions (calcarine and lingual gyrus, t = 3.20; P < .01). Similar to ALFF, football players exhibited lower ReHo in the precentral gyrus and medial aspects of the brain, such as precuneus, insula, and cingulum, whereas elevated ReHo was clustered in the occipitotemporal regions (t = 3.17; P < .001; to 4.32; P < .01). There was no group difference in RS-FC measures. Conclusions and Relevance: In this study of adolescent athletes, there was evidence of discernible structural and physiological differences in the brains of adolescent football players compared with their noncontact controls. Many of the affected brain regions were associated with mental health well-being.


Assuntos
Futebol Americano , Adolescente , Masculino , Humanos , Estudos de Coortes , Córtex Cerebral/diagnóstico por imagem , Giro do Cíngulo
4.
Neurotrauma Rep ; 5(1): 512-521, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101152

RESUMO

The aim of this study was to examine whether neuro-ophthalmological function, as assessed by the King-Devick test (KDT), alters during a high school football season and to explore the role of auditory interference on the sensitivity of KDT. During the 2021 and 2022 high school football seasons, football players' neuro-ophthalmological function was assessed at five time points (preseason, three in-season, postseason), whereas control athletes were assessed at preseason and postseason. Two-hundred ten football players and 80 control athletes participated in the study. The year 1 cohort (n = 94 football, n = 10 control) was tested with a conventional KDT, whereas the year 2 cohort (n = 116 football, n = 70 control) was tested with KDT while listening to loud traffic sounds to induce auditory interference. There were improvements in KDT during a season among football players, regardless of conventional KDT (preseason 53.4 ± 9.3 vs. postseason 46.4 ± 8.5 sec; ß = -1.7, SE = 0.12, p < 0.01) or KDT with auditory interference (preseason 52.3 ± 11.5 vs. postseason 45.1 ± 9.5 sec; ß = -1.7, SE = 0.11, p < 0.001). The degree of improvement was similar between the tests, with no significant group-by-time interaction (ß = -0.08, SE = 0.17, p = 0.65). The control athletes also improved KDT performance at a similar degree as the football cohorts in both KDT conditions. Our data suggest that KDT performance improves during a season, regardless of auditory interference or head impact exposure. KDT performance was not impacted by a noisy environment, supporting its sideline utility for screening more severe forms of injury.

5.
J Adolesc Health ; 72(4): 502-509, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36610880

RESUMO

PURPOSE: Age of first exposure to tackle football and head impact kinematics have been used to examine the effect of head impacts on mental health outcomes. These measures coupled with retrospective and cross-sectional designs have contributed to conflicting results. The purpose of this study was to identify the effect of one season of head impact exposure, age of first exposure to football, and psychological need satisfaction on acute mental health outcomes in adolescent football players. METHODS: This prospective single-season cohort study used sensor-installed mouthguards to collect head impact exposure along with surveys to assess age of first exposure to football, psychological satisfaction, depressive symptoms, anxiety symptoms, and thriving from football players at four high schools (n = 91). Linear regression was used to test the association of head impact exposure, age of first exposure, and psychological satisfaction with acute mental health outcomes. RESULTS: A total of 9,428 impacts were recorded with a mean of 102 ± 113 impacts/player. Cumulative head impact exposure and age of first exposure were not associated with acute mental health outcomes at postseason or change scores from preseason to postseason. Greater psychological satisfaction was associated with fewer depressive symptoms (ß = -0.035, SE = 0.008, p = < .001), fewer anxiety symptoms (ß = -0.021, SE = 0.008, p = .010), and greater thriving scores (ß = 0.278, SE = 0.040, p = < .001) at postseason. DISCUSSION: This study does not support the premise that greater single-season head impact exposure or earlier age of first exposure to tackle football is associated with worse acute mental health indicators over the course of a single season in adolescent football players.


Assuntos
Concussão Encefálica , Futebol Americano , Saúde Mental , Humanos , Adolescente , Instituições Acadêmicas , Estudos Prospectivos , Estudos Retrospectivos , Estudos Transversais , Traumatismos em Atletas
6.
JAMA Netw Open ; 6(5): e2316601, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37252737

RESUMO

Importance: Consequences of subconcussive head impacts have been recognized, yet most studies to date have included small samples from a single site, used a unimodal approach, and lacked repeated testing. Objective: To examine time-course changes in clinical (near point of convergence [NPC]) and brain-injury blood biomarkers (glial fibrillary acidic protein [GFAP], ubiquitin C-terminal hydrolase-L1 [UCH-L1], and neurofilament light [NF-L]) in adolescent football players and to test whether changes in the outcomes were associated with playing position, impact kinematics, and/or brain tissue strain. Design, Setting, and Participants: This multisite, prospective cohort study included male high school football players aged 13 to 18 years at 4 high schools in the Midwest during the 2021 high school football season (preseason [July] and August 2 to November 19). Exposure: A single football season. Main Outcomes and Measures: The main outcomes were NPC (a clinical oculomotor test) and serum levels of GFAP, UCH-L1, and NF-L. Participants' head impact exposure (frequency and peak linear and rotational accelerations) was tracked using instrumented mouthguards, and maximum principal strain was computed to reflect brain tissue strain. Players' neurological function was assessed at 5 time points (preseason, post-training camp, 2 in season, and postseason). Results: Ninety-nine male players contributed to the time-course analysis (mean [SD] age, 15.8 [1.1] years), but data from 6 players (6.1%) were excluded from the association analysis due to issues related to mouthguards. Thus, 93 players yielded 9498 head impacts in a season (mean [SD], 102 [113] impacts per player). There were time-course elevations in NPC and GFAP, UCH-L1, and NF-L levels. Compared with baseline, the NPC exhibited a significant elevation over time and peaked at postseason (2.21 cm; 95% CI, 1.80-2.63 cm; P < .001). Levels of GFAP and UCH-L1 increased by 25.6 pg/mL (95% CI, 17.6-33.6 pg/mL; P < .001) and 188.5 pg/mL (95% CI, 145.6-231.4 pg/mL; P < .001), respectively, later in the season. Levels of NF-L were elevated after the training camp (0.78 pg/mL; 95% CI, 0.14-1.41 pg/mL; P = .011) and midseason (0.55 pg/mL; 95% CI, 0.13-0.99 pg/mL; P = .006) but normalized by the end of the season. Changes in UCH-L1 levels were associated with maximum principal strain later in the season (0.052 pg/mL; 95% CI, 0.015-0.088 pg/mL; P = .007) and postseason (0.069 pg/mL; 95% CI, 0.031-0.106 pg/mL; P < .001). Conclusions and Relevance: The study data suggest that adolescent football players exhibited impairments in oculomotor function and elevations in blood biomarker levels associated with astrocyte activation and neuronal injury throughout a season. Several years of follow-up are needed to examine the long-term effects of subconcussive head impacts in adolescent football players.


Assuntos
Concussão Encefálica , Traumatismos Craniocerebrais , Futebol Americano , Humanos , Masculino , Adolescente , Futebol Americano/lesões , Estudos Prospectivos , Biomarcadores
7.
ArXiv ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37332566

RESUMO

Neuroscience research has expanded dramatically over the past 30 years by advancing standardization and tool development to support rigor and transparency. Consequently, the complexity of the data pipeline has also increased, hindering access to FAIR data analysis to portions of the worldwide research community. brainlife.io was developed to reduce these burdens and democratize modern neuroscience research across institutions and career levels. Using community software and hardware infrastructure, the platform provides open-source data standardization, management, visualization, and processing and simplifies the data pipeline. brainlife.io automatically tracks the provenance history of thousands of data objects, supporting simplicity, efficiency, and transparency in neuroscience research. Here brainlife.io's technology and data services are described and evaluated for validity, reliability, reproducibility, replicability, and scientific utility. Using data from 4 modalities and 3,200 participants, we demonstrate that brainlife.io's services produce outputs that adhere to best practices in modern neuroscience research.

8.
Biol Psychol ; 172: 108353, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569575

RESUMO

Attention bias modification (ABM) was developed to alleviate anxious symptoms by way of a reduction in anxiety-linked attentional bias to threat. Central to the rational of ABM is a learning-related reconfiguration of attentional biases. Yet, the neuroplastic changes in brain structure that underlie this learning are unresolved. The amygdala, anterior cingulate cortex, and lateral prefrontal cortex are part of a system linked to attentional bias to threat and its modification with ABM. We assessed the extent to which ABM modulates gray matter volume and resting-state functional connectivity. Sixty-one individuals selected for attentional bias to threat and heightened trait anxiety completed a 6-week multi-session ABM protocol with 7200 total training trials. Participants were assigned to either an ABM (n = 30) or a control (n = 31) condition. We found that participants' levels of attentional bias and anxiety did not differ following ABM and control training interventions. However, the ABM group displayed greater levels of anterior cingulate cortex gray matter volume as well as greater superior frontal gyrus resting-state functional connectivity with the anterior cingulate cortex and insula. Changes in anterior cingulate cortex gray matter volume were linked to reduced anxious symptoms in the ABM, but not control, group. These findings suggest that ABM distinctively impacts structural and functional neural mechanisms associated with emotion reactivity and cognitive control processes.


Assuntos
Viés de Atenção , Ansiedade/diagnóstico por imagem , Ansiedade/psicologia , Transtornos de Ansiedade/psicologia , Substância Cinzenta/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA