RESUMO
Muscular hydrostats are organs composed entirely of packed arrays of incompressible muscles and lacking any skeletal support. Found in both vertebrates and invertebrates, they are of great interest for comparative biomechanics from engineering and evolutionary perspectives. The arms of cephalopods (e.g. octopus and squid) are particularly interesting muscular hydrostats because of their flexibility and ability to generate complex behaviors exploiting elaborate nervous systems. Several lines of evidence from octopus studies point to the use of both brain and arm-embedded motor control strategies that have evolved to simplify the complexities associated with the control of flexible and hyper-redundant limbs and bodies. Here, we review earlier and more recent experimental studies on octopus arm biomechanics and neural motor control. We review several dynamic models used to predict the kinematic characteristics of several basic motion primitives, noting the shortcomings of the current models in accounting for behavioral observations. We also discuss the significance of impedance (stiffness and viscosity) in controlling the octopus's motor behavior. These factors are considered in light of several new models of muscle biomechanics that could be used in future research to gain a better understanding of motor control in the octopus. There is also a need for updated models that encompass stiffness and viscosity for designing and controlling soft robotic arms. The field of soft robotics has boomed over the past 15 years and would benefit significantly from further progress in biomechanical and motor control studies on octopus and other muscular hydrostats.
Assuntos
Extremidades , Músculos , Octopodiformes , Animais , Fenômenos Biomecânicos , Extremidades/inervação , Extremidades/fisiologia , Músculos/inervação , Músculos/fisiologia , Octopodiformes/fisiologia , Robótica , Cefalópodes/fisiologiaRESUMO
Octopus arms are highly flexible structures capable of complex motions and are used in a wide repertoire of behaviors. Movements are generated by the coordinated summation of innervation signals to packed arrays of muscles oriented in different directions and moving based on their anatomical relationships. In this study, we investigated the interplay between muscle biomechanics and anatomical organization in the Octopus vulgaris arm to elucidate their role in different arm movements. We performed isometric and isotonic force measurements on isolated longitudinal and transverse arm muscles and showed that longitudinal muscles have a higher rate of activation and relaxation, lower twitch-to-tetanus ratio and lower passive tension than transverse muscles, thus prompting their use as faster and slower muscles, respectively. This points to the use of longitudinal muscles in more graded responses, such as those involved in precise actions, and transverse muscles in intense and sustained actions, such as motion stabilization and posture maintenance. Once activated, the arm muscles exert forces that cause deformations of the entire arm, which are determined by the amount, location, properties and orientation of their fibers. Here, we show that, although continuous, the arm manifests a certain degree of morphological specialization, where the arm muscles have a different aspect ratio along the arm. This possibly supports the functional specialization of arm portions observed in various motions, such as fetching and crawling. Hence, the octopus arm as a whole can be seen as a 'reservoir' of possibilities where different types of motion may emerge at the limb level through the co-option of the muscle contractile properties and structural arrangement.
Assuntos
Braço , Octopodiformes , Animais , Contração Muscular , Músculos , Extremidade SuperiorRESUMO
The octopus arm is a 'one of a kind' muscular hydrostat, as demonstrated by its high maneuverability and complexity of motions. It is composed of a complex array of muscles and intramuscular connective tissue, allowing force and shape production. In this study, we investigated the organization of the intramuscular elastic fibers in two main muscles composing the arm bulk: the longitudinal (L) and the transverse (T) muscles. We assessed their contribution to the muscles' passive elasticity and stiffness and inferred their possible roles in limb deformation. First, we performed confocal imaging of whole-arm samples and provided evidence of a muscle-specific organization of elastic fibers (more chaotic and less coiled in T than in L). We next showed that in an arm at rest, L muscles are maintained under 20% compression and T muscles under 30% stretching. Hence, tensional stresses are inherently present in the arm and affect the strain of elastic fibers. Because connective tissue in muscles is used to transmit stress and store elastic energy, we investigated the contribution of elastic fibers to passive forces using step-stretch and sinusoidal length-change protocols. We observed a higher viscoelasticity of L and a higher stiffness of T muscles, in line with their elastic fiber configurations. This suggests that L might be involved in energy storage and damping, whereas T is involved in posture maintenance and resistance to deformation. The elastic fiber configuration thus supports the specific role of muscles during movement and may contribute to the mechanics, energetics and control of arm motion.
Assuntos
Octopodiformes , Animais , Tecido Conjuntivo , Elasticidade , Músculo Esquelético , Extremidade SuperiorRESUMO
The muscular-hydrostat configuration of octopus arms allows high manoeuvrability together with the efficient motor performance necessary for its multitasking abilities. To control this flexible and hyper-redundant system the octopus has evolved unique strategies at the various levels of its brain-to-body organization. We focus here on the arm neuromuscular junction (NMJ) and excitation-contraction (E-C) properties of the arm muscle cells. We show that muscle cells are cholinergically innervated at single eye-shaped locations where acetylcholine receptors (AChR) are concentrated, resembling the vertebrate neuromuscular endplates. Na+ and K+ contribute nearly equally to the ACh-activated synaptic current mediating membrane depolarization, thereby activating voltage-dependent L-type Ca2+ channels. We show that cell contraction can be mediated directly by the inward Ca2+ current and also indirectly by calcium-induced calcium release (CICR) from internal stores. Indeed, caffeine-induced cell contraction and immunohistochemical staining revealed the presence and close association of dihydropyridine (DHPR) and ryanodine (RyR) receptor complexes, which probably mediate the CICR. We suggest that the dynamics of octopus arm contraction can be controlled in two ways; motoneurons with large synaptic inputs activate vigorous contraction via activation of the two routs of Ca2+ induced contraction, while motoneurons with lower-amplitude inputs may regulate a graded contraction through frequency-dependent summation of EPSP trains that recruit the CICR. Our results thus suggest that these motoneuronal pools are likely to be involved in the activation of different E-C coupling modes, thus enabling a dynamics of muscles activation appropriate for various tasks such as stiffening versus motion generation.
Assuntos
Contração Muscular/fisiologia , Junção Neuromuscular/fisiologia , Octopodiformes/fisiologia , Animais , Cálcio , Proteínas MuscularesRESUMO
The octopus's arms have virtually infinite degrees of freedom, providing a unique opportunity for studying movement control in a redundant motor system. Here, we investigated the organization of the connections between the brain and arms through the cerebrobrachial tracts (CBT). To do this, we analyzed the neuronal activity associated with the contraction of a small muscle strand left connected at the middle of a long isolated CBT. Both electrical activity in the CBT and muscle contraction could be induced at low threshold values irrespective of stimulus direction and distance from the muscle strand. This suggests that axons associated with transmitting motor commands run along the CBT and innervate a large pool of motor neurons en passant. This type of innervation implies that central and peripheral motor commands involve the simultaneous recruitment of large groups of motor neurons along the arm as required, for example, in arm stiffening, and that the site of movement initiation along the arm may be determined through a unique interplay between global central commands and local sensory signals.
Assuntos
Extremidades/inervação , Neurônios Motores , Movimento/fisiologia , Vias Neurais , Octopodiformes , AnimaisRESUMO
Achieving complex behavior in soft-bodied animals is a hard task, because their body morphology is not constrained by a fixed number of jointed elements, as in skeletal animals, and thus the control system has to deal with practically an infinite number of control variables (degrees of freedom). Almost 30 years of research on Octopus vulgaris motor control has revealed that octopuses efficiently control their body with strategies that emerged during the adaptive coevolution of their nervous system and body morphology. In this minireview, we highlight principles of embodied organization that were revealed by studying octopus motor control, and that are used as inspiration for soft robotics. We describe the evolved solutions to the problem, implemented from the lowest level, the muscular system, to the network organization in higher motor control centers of the octopus brain. We show how the higher motor control centers, where the sensory-motor interface lies, can control and coordinate limbs with large degrees of freedom without using body-part maps to represent sensory and motor information, as they do in vertebrates. We demonstrate how this unique control mechanism, which allows efficient control of the body in a large variety of behaviors, is embodied within the animal's body morphology.
Assuntos
Octopodiformes , Animais , Octopodiformes/fisiologia , Sistema Nervoso/anatomia & histologia , EncéfaloRESUMO
Due to their unique body, standard behavioral testing protocols are often hard to apply to octopuses. Our protocol enables controlled behavioral testing of the sensory systems in single arms while allowing observation of the arm motion. The protocol allows the researcher to exclude the sense of vision without surgical manipulation and selectively test peripheral sensory input-derived learning and motor behavior. Applying the protocol requires systematic and multistage training of octopuses to associate correct maze interaction with food reward. For complete details on the use and execution of this profile, please refer to Gutnick et al. (2020).
Assuntos
Octopodiformes , Animais , Aprendizagem , Recompensa , TatoRESUMO
Octopuses are active predators with highly flexible bodies and rich behavioral repertoires [1-3]. They display advanced cognitive abilities, and the size of their large nervous system rivals that of many mammals. However, only one third of the neurons constitute the CNS, while the rest are located in an elaborate PNS, including eight arms, each containing myriad sensory receptors of various modalities [2-4]. This led early workers to question the extent to which the CNS is privy to non-visual sensory input from the periphery and to suggest that it has limited capacity to finely control arm movement [3-5]. This conclusion seemed reasonable considering the size of the PNS and the results of early behavioral tests [3, 6-8]. We recently demonstrated that octopuses use visual information to control goal-directed complex single arm movements [9]. However, that study did not establish whether animals use information from the arm itself [9-12]. We here report on development of two-choice, single-arm mazes that test the ability of octopuses to perform operant learning tasks that mimic normal tactile exploration behavior and require the non-peripheral neural circuitry to use focal sensory information originating in single arms [1, 10]. We show that the CNS of the octopus uses peripheral information about arm motion as well as tactile input to accomplish learning tasks that entail directed control of movement. We conclude that although octopus arms have a great capacity to act independently, they are also subject to central control, allowing well-organized, purposeful behavior of the organism as a whole.
Assuntos
Comportamento Animal/fisiologia , Sistema Nervoso Central/fisiologia , Extremidades/fisiologia , Movimento/fisiologia , Octopodiformes/fisiologia , Animais , Comportamento Exploratório/fisiologia , Extremidades/inervação , Aprendizagem/fisiologia , Octopodiformes/anatomia & histologia , Propriocepção/fisiologia , Percepção do Tato/fisiologiaRESUMO
Cells with contractile functions are present in almost all metazoans, and so are the related processes of muscle homeostasis and regeneration. Regeneration itself is a complex process unevenly spread across metazoans that ranges from full-body regeneration to partial reconstruction of damaged organs or body tissues, including muscles. The cellular and molecular mechanisms involved in regenerative processes can be homologous, co-opted, and/or evolved independently. By comparing the mechanisms of muscle homeostasis and regeneration throughout the diversity of animal body-plans and life cycles, it is possible to identify conserved and divergent cellular and molecular mechanisms underlying muscle plasticity. In this review we aim at providing an overview of muscle regeneration studies in metazoans, highlighting the major regenerative strategies and molecular pathways involved. By gathering these findings, we wish to advocate a comparative and evolutionary approach to prompt a wider use of "non-canonical" animal models for molecular and even pharmacological studies in the field of muscle regeneration.
Assuntos
Músculos/fisiologia , Regeneração/fisiologia , AnimaisRESUMO
Cephalopods are highly evolved marine invertebrates that colonized almost all the oceans of the world at all depths. This imposed the occurrence of several modifications of their brain and body whose muscle component represents the major constituent. Hence, studying their muscle physiology may give important hints in the context of animal biology and environmental adaptability. One major pathway involved in muscle metabolism in vertebrates is the evolutionary conserved mTOR-signaling cascade; however, its role in cephalopods has never been elucidated. mTOR is regulating cell growth and homeostasis in response to a wide range of cues such as nutrient availability, body temperature and locomotion. It forms two functionally heteromeric complexes, mTORC1 and mTORC2. mTORC1 regulates protein synthesis and degradation and, in skeletal muscles, its activation upon exercise induces muscle growth. In this work, we characterized Octopus vulgaris mTOR full sequence and functional domains; we found a high level of homology with vertebrates' mTOR and the conservation of Ser2448 phosphorylation site required for mTORC1 activation. We then designed and tested an in vitro protocol of resistance exercise (RE) inducing fatigue in arm samples. We showed that, upon the establishment of fatigue, a transient increase in mTORC1 phosphorylation reaching a pick 30 min after exercise was induced. Our data indicate the activation of mTORC1 pathway in exercise paradigm and possibly in the regulation of energy homeostasis in octopus and suggest that mTORC1 activity can be used to monitor animal response to changes in physiological and ecological conditions and, more in general, the animal welfare.
RESUMO
Synapsins are a family of phosphoproteins fundamental to the regulation of neurotransmitter release. They are typically neuron-specific, although recent evidence pointed to their expression in non-neuronal cells where they play a role in exocytosis and vesicle trafficking. In this work, we characterized synapsin transcripts in the invertebrate mollusk Octopus vulgaris and present evidence of their expression not only in the brain but also in male and female reproductive organs. We identified three synapsin isoforms phylogenetically correlated to that of other invertebrates and with a modular structure characteristic of mammalian synapsins with a central, highly conserved C domain, important for the protein functions, and less conserved A, B and E domains. Our molecular modeling analysis further provided a solid background for predicting synapsin functional binding to ATP, actin filaments and secretory vesicles. Interestingly, we found that synapsin expression in ovary and testis increased during sexual maturation in cells with a known secretory role, potentially matching the occurrence of a secretion process. This might indicate that its secretory role has evolved across animals according to cell activity in spite of cell identity. We believe that this study may yield insights into the convergent evolution of ubiquitously expressed proteins between vertebrates and invertebrates.
Assuntos
Regulação da Expressão Gênica/fisiologia , Octopodiformes/metabolismo , Maturidade Sexual/fisiologia , Sinapsinas/biossíntese , Animais , Feminino , Masculino , Octopodiformes/genética , Especificidade de Órgãos/fisiologia , Domínios Proteicos , Isoformas de ProteínasRESUMO
This study aimed to develop a method of administering 18F-FDG to the common octopus in order to perform a PET biodistribution assay characterizing glucose metabolism in organs and regenerating tissues. Methods: Seven animals (two of which had a regenerating arm) were anesthetized with 3.7% MgCl2 in artificial seawater and then injected with 18-30 MBq of isosmotic 18F-FDG through either the left branchial heart or the anterior vena cava. After an uptake time of about 50 min, the animals were sacrificed and placed on the bed of a small-animal PET scanner, and 10-min static acquisitions were obtained at 3-4 bed positions to visualize the entire body. To confirm image interpretation, internal organs of interest were collected and counted with a γ-counter. Results: Administration through the anterior vena cava resulted in a good full-body distribution of 18F-FDG as seen on the PET images. Uptake was high in the mantle mass and relatively lower in the arms. In particular, the brain, optic lobes, and arms were clearly identified and were measured for their uptake (SUVmax: 6.57 ± 1.86, 7.59 ± 1.66, and 1.12 ± 0.06, respectively). Interestingly, 18F-FDG uptake was up to 3-fold higher in the highly proliferating areas of regenerating arms. Conclusion: This study represents a stepping-stone to the use of noninvasive functional techniques for addressing questions about invertebrate neuroscience and regenerative medicine.
Assuntos
Fluordesoxiglucose F18 , Octopodiformes , Tomografia por Emissão de Pósitrons , Regeneração , Animais , Transporte Biológico , Feminino , Fluordesoxiglucose F18/metabolismo , Fluordesoxiglucose F18/farmacocinética , Masculino , Neurociências , Distribuição TecidualRESUMO
The ability to regenerate whole-body structures has been studied for many decades and is of particular interest for stem cell research due to its therapeutic potential. Several vertebrate and invertebrate species have been used as model systems to study pathways involved in regeneration in the past. Among invertebrates, cephalopods are considered as highly evolved organisms, which exhibit elaborate behavioral characteristics when compared to other mollusks including active predation, extraordinary manipulation, and learning abilities. These are enabled by a complex nervous system and a number of adaptations of their body plan, which were acquired over evolutionary time. Some of these novel features show similarities to structures present in vertebrates and seem to have evolved through a convergent evolutionary process. Octopus vulgaris (the common octopus) is a representative of modern cephalopods and is characterized by a sophisticated motor and sensory system as well as highly developed cognitive capabilities. Due to its phylogenetic position and its high regenerative power the octopus has become of increasing interest for studies on regenerative processes. In this paper we provide an overview over the current knowledge of cephalopod muscle types and structures and present a possible link between these characteristics and their high regenerative potential. This may help identify conserved molecular pathways underlying regeneration in invertebrate and vertebrate animal species as well as discover new leads for targeted tissue treatments in humans.
RESUMO
BACKGROUND: Most of our current findings on appendage formation and patterning stem from studies on chordate and ecdysozoan model organisms. However, in order to fully understand the evolution of animal appendages, it is essential to include information on appendage development from lophotrochozoan representatives. Here, we examined the basic dynamics of the Octopus vulgaris arm's formation and differentiation - as a highly evolved member of the lophotrochozoan super phylum - with a special focus on the formation of the arm's musculature. RESULTS: The octopus arm forms during distinct phases, including an early outgrowth from an epithelial thickening, an elongation, and a late differentiation into mature tissue types. During early arm outgrowth, uniform proliferation leads to the formation of a rounded bulge, which subsequently elongates along its proximal-distal axis by means of actin-mediated epithelial cell changes. Further differentiation of all tissue layers is initiated but end-differentiation is postponed to post-hatching stages. Interestingly, muscle differentiation shows temporal differences in the formation of distinct muscle layers. Particularly, first myocytes appear in the area of the future transverse prior to the longitudinal muscle layer, even though the latter represents the more dominant muscle type at hatching stage. Sucker rudiments appear as small epithelial outgrowths with a mesodermal and ectodermal component on the oral part of the arm. During late differentiation stages, cell proliferation becomes localized to a distal arm region termed the growth zone of the arm. CONCLUSIONS: O. vulgaris arm formation shows both, similarities to known model species as well as species-specific patterns of arm formation. Similarities include early uniform cell proliferation and actin-mediated cell dynamics, which lead to an elongation along the proximal-distal axis. Furthermore, the switch to an adult-like progressive distal growth mode during late differentiation stages is reminiscent of the vertebrate progress zone. However, tissue differentiation shows a species-specific delay, which is correlated to a paralarval pelagic phase after hatching and concomitant emerging behavioral modifications. By understanding the general dynamics of octopus arm formation, we established a basis for further studies on appendage patterning, growth, and differentiation in a representative of the lophotrochozoan super phylum.
RESUMO
Acetylcholinesterase (ACHE) is a glycoprotein with a key role in terminating synaptic transmission in cholinergic neurons of both vertebrates and invertebrates. ACHE is also involved in the regulation of cell growth and morphogenesis during embryogenesis and regeneration acting through its non-cholinergic sites. The mollusk Octopus vulgaris provides a powerful model for investigating the mechanisms underlying tissue morphogenesis due to its high regenerative power. Here, we performed a comparative investigation of arm morphogenesis during adult arm regeneration and embryonic arm development which may provide insights on the conserved ACHE pathways. In this study, we cloned and characterized O. vulgaris ACHE, finding a single highly conserved ACHE hydrophobic variant, characterized by prototypical catalytic sites and a putative consensus region for a glycosylphosphatidylinositol (GPI)-anchor attachment at the COOH-terminus. We then show that its expression level is correlated to the stage of morphogenesis in both adult and embryonic arm. In particular, ACHE is localized in typical neuronal sites when adult-like arm morphology is established and in differentiating cell locations during the early stages of arm morphogenesis. This possibility is also supported by the presence in the ACHE sequence and model structure of both cholinergic and non-cholinergic sites. This study provides insights into ACHE conserved roles during processes of arm morphogenesis. In addition, our modeling study offers a solid basis for predicting the interaction of the ACHE domains with pharmacological blockers for in vivo investigations. We therefore suggest ACHE as a target for the regulation of tissue morphogenesis.
Assuntos
Acetilcolinesterase/metabolismo , Extremidades/embriologia , Octopodiformes/embriologia , Octopodiformes/enzimologia , Regeneração , Acetilcolinesterase/química , Acetilcolinesterase/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , Feminino , Hibridização In Situ , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Alinhamento de SequênciaRESUMO
Cephalopods have been utilised in neuroscience research for more than 100 years particularly because of their phenotypic plasticity, complex and centralised nervous system, tractability for studies of learning and cellular mechanisms of memory (e.g. long-term potentiation) and anatomical features facilitating physiological studies (e.g. squid giant axon and synapse). On 1 January 2013, research using any of the about 700 extant species of "live cephalopods" became regulated within the European Union by Directive 2010/63/EU on the "Protection of Animals used for Scientific Purposes", giving cephalopods the same EU legal protection as previously afforded only to vertebrates. The Directive has a number of implications, particularly for neuroscience research. These include: (1) projects will need justification, authorisation from local competent authorities, and be subject to review including a harm-benefit assessment and adherence to the 3Rs principles (Replacement, Refinement and Reduction). (2) To support project evaluation and compliance with the new EU law, guidelines specific to cephalopods will need to be developed, covering capture, transport, handling, housing, care, maintenance, health monitoring, humane anaesthesia, analgesia and euthanasia. (3) Objective criteria need to be developed to identify signs of pain, suffering, distress and lasting harm particularly in the context of their induction by an experimental procedure. Despite diversity of views existing on some of these topics, this paper reviews the above topics and describes the approaches being taken by the cephalopod research community (represented by the authorship) to produce "guidelines" and the potential contribution of neuroscience research to cephalopod welfare.
Assuntos
Experimentação Animal/normas , Bem-Estar do Animal/normas , Cefalópodes , Neurociências/normas , Animais , União Europeia , Guias como AssuntoRESUMO
Developed biological systems are endowed with the ability of interacting with the environment; they sense the external state and react to it by changing their own internal state. Many attempts have been made to build 'hybrids' with the ability of perceiving, modifying and reacting to external modifications. Investigation of the rules that govern network changes in a hybrid system may lead to finding effective methods for 'programming' the neural tissue toward a desired task. Here we show a new perspective in the use of cortical neuronal cultures from embryonic mouse as a working platform to study targeted synaptic modifications. Differently from the common timing-based methods applied in bio-hybrids robotics, here we evaluated the importance of endogenous spike timing in the information processing. We characterized the influence of a spike-patterned stimulus in determining changes in neuronal synchronization (connectivity strength and precision) of the evoked spiking and bursting activity in the network. We show that tailoring the stimulation pattern upon a neuronal spike timing induces the network to respond stronger and more precisely to the stimulation. Interestingly, the induced modifications are conveyed more consistently in the burst timing. This increase in strength and precision may be a key in the interaction of the network with the external world and may be used to induce directional changes in bio-hybrid systems.
Assuntos
Modelos Neurológicos , Rede Nervosa/fisiologia , Robótica , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Animais , Estimulação Elétrica , Camundongos , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologiaRESUMO
The concept of 'embodiment' and its implications for the evolution of cognitive capacities is emerging as a major issue in biology. Invertebrates have immensely diverse nervous structures and body plans, revealing the variety of solutions evolved by animals living successfully in all kinds of niches. Among invertebrates, the octopus is a special case because of its high cognitive abilities and a uniquely flexible body and manoeuvrable arms with virtually infinite degrees of freedom. Here we discuss how the octopus embodiment may be considered a 'key' to the development of its neural organisation and cognitive abilities.
RESUMO
Hyperredundant limbs with a virtually unlimited number of degrees of freedom (DOFs) pose a challenge for both biological and computational systems of motor control. In the flexible arms of the octopus, simplification strategies have evolved to reduce the number of controlled DOFs. Motor control in the octopus nervous system is hierarchically organized. A relatively small central brain integrates a huge amount of visual and tactile information from the large optic lobes and the peripheral nervous system of the arms and issues commands to lower motor centers controlling the elaborated neuromuscular system of the arms. This unique organization raises new questions on the organization of the octopus brain and whether and how it represents the rich movement repertoire. We developed a method of brain microstimulation in freely behaving animals and stimulated the higher motor centers-the basal lobes-thus inducing discrete and complex sets of movements. As stimulation strength increased, complex movements were recruited from basic components shared by different types of movement. We found no stimulation site where movements of a single arm or body part could be elicited. Discrete and complex components have no central topographical organization but are distributed over wide regions.