Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nature ; 596(7872): 372-376, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34408328

RESUMO

Many emerging materials, such as ultrastable glasses1,2 of interest for phone displays and OLED television screens, owe their properties to a gradient of enhanced mobility at the surface of glass-forming liquids. The discovery of this surface mobility enhancement3-5 has reshaped our understanding of the behaviour of glass formers and of how to fashion them into improved materials. In polymeric glasses, these interfacial modifications are complicated by the existence of a second length scale-the size of the polymer chain-as well as the length scale of the interfacial mobility gradient6-9. Here we present simulations, theory and time-resolved surface nano-creep experiments to reveal that this two-scale nature of glassy polymer surfaces drives the emergence of a transient rubbery, entangled-like surface behaviour even in polymers comprised of short, subentangled chains. We find that this effect emerges from superposed gradients in segmental dynamics and chain conformational statistics. The lifetime of this rubbery behaviour, which will have broad implications in constraining surface relaxations central to applications including tribology, adhesion, and surface healing of polymeric glasses, extends as the material is cooled. The surface layers suffer a general breakdown in time-temperature superposition (TTS), a fundamental tenet of polymer physics and rheology. This finding may require a reevaluation of strategies for the prediction of long-time properties in polymeric glasses with high interfacial areas. We expect that this interfacial transient elastomer effect and TTS breakdown should normally occur in macromolecular systems ranging from nanocomposites to thin films, where interfaces dominate material properties5,10.

2.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38345116

RESUMO

The dynamics of polymer nanocomposites varies depending on the physics and chemistry at the polymer-nanoparticle interface. The physical aging of the nanocomposites is accelerated or retarded based on interfacial interactions and the state of polymer adsorption at the interfaces. In this study, we investigated the aging kinetics of silica-polystyrene nanocomposites using differential scanning calorimetry, focusing on the effect of local conformations of chains adsorbed on the nanofiller surface. The results show that the temperature dependence of the aging rate follows a Vogel-Fulcher-Tammann relationship at high temperatures, whereas it exhibits an Arrhenius-like behavior below a characteristic temperature (Tc). Notably, at T < Tc, the aging rate decreases with increasing loop height of the chains adsorbed on the filler surface, but the activation energy remains unchanged. We proposed that the suppression of the aging rate at T < Tc is likely related to an increase in the length scale over which the slow interfacial dynamics can propagate due to the increased topological interactions between the chain loops of a larger size and the free chains in the matrix. The increased packing frustration occurring at the filler surface occupied by the larger loops might also contribute to the decreased aging rate.

3.
Soft Matter ; 18(43): 8331-8341, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36300535

RESUMO

Amorphous solid dispersions (ASDs) utilize the kinetic stability of the amorphous state to stabilize drug molecules within a glassy polymer matrix. Therefore, understanding the glassy-state stability of the polymer excipient is critical to ASD design and performance. Here, we investigated the physical aging of hydroxypropyl methylcellulose acetate succinate (HPMCAS), a commonly used polymer in ASD formulations. We found that HPMCAS exhibited conventional physical aging behavior when annealed near the glass transition temperature (Tg). In this scenario, structural recovery was facilitated by α-relaxation dynamics. However, when annealed well below Tg, a sub-α-relaxation process facilitated low-temperature physical aging in HPMCAS. Nevertheless, the physical aging rate exhibited no significant change up to 40 K below Tg, below which it exhibited a near monotonic decrease with decreasing temperature. Finally, infrared spectroscopy was employed to assess any effect of physical aging on the chemical structure of HPMCAS, which is known to be susceptible to degradation at temperatures 30 K above its Tg. Our results provide critical insights necessary to understand better the link between the stability of ASDs and physical aging of the glassy polymer matrix.


Assuntos
Excipientes , Metilcelulose , Estabilidade de Medicamentos , Metilcelulose/química , Excipientes/química , Polímeros/química , Solubilidade
4.
Macromol Rapid Commun ; 41(6): e1900582, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32037634

RESUMO

Annealing a supported polymer film in the melt state results in the growth of an irreversibly adsorbed layer, which has been shown to influence thin film properties such as diffusion and glass transition temperature. Adsorbed layer growth is attributed to many simultaneous interactions between individual monomer units and the substrate, stabilizing chains against desorption. In this study, adsorbed layers of polystyrene (PS), poly(methyl methacrylate) (PMMA), and their random copolymers are isolated by select solvents. While PS adsorbed layer thickness is largely unaffected by the choice of washing solvent, the PMMA adsorbed layer completely desorbs when washed with tetrahydrofuran and chloroform, as opposed to toluene. Scaling relationships between adsorbed layer thickness and degree of chain adsorption at the substrate enable the use of adsorbed layer thickness to probe specific polymer-substrate interactions. Composition-dependent desorption trends indicate non-preferential adsorption between styrene and methyl methacrylate repeat units at the substrate, despite differences in substrate interaction strength. This insight contributes to the developing mechanism for the adsorption of random copolymers during melt-state annealing, further extending the ability to predict processing-inducted changes to the properties of polymer thin films to heterogeneous systems.


Assuntos
Polímeros/química , Polimetil Metacrilato/química , Poliestirenos/química , Solventes/química , Adsorção , Clorofórmio/química , Furanos/química , Polímeros/síntese química , Solubilidade , Propriedades de Superfície , Temperatura , Tolueno/química
5.
J Chem Phys ; 152(6): 064904, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32061204

RESUMO

A method based on the PeakForce QNM atomic force microscopic (AFM) adhesion measurement is employed to investigate the glassy dynamics of polystyrene (PS) single-chain particles end-grafted to SiO2-Si substrates with different diameters, D0, of 3.4 nm-8.8 nm and molar masses, Mn, of 8-123 kg/mol. As temperature was increased, the adhesion force, Fad, experienced by the AFM tip on pulling off the single chains after loading demonstrated a stepwise increase at an elevated temperature, which we identified to be Tg based on previous works. Our result shows that Tg of our grafted single chains increases with Mn in a manner consistent with the Fox-Flory equation, but the coefficient quantifying the Mn dependence of Tg is only (36 ± 6)% the value of bulk PS. In addition, the value of Tg in the Mn → ∞ limit is about 25 °C below the bulk Tg but more than 15 °C above that of (untethered) PS nanoparticles with D0 ≈ 100 nm suspended in a solution. Our findings are consistent with Tg of our single chains being dominated by simultaneous effects of the interfaces, which depress Tg, and end-grafting, which enhances Tg. The latter is believed to exert its influence on the glass transition dynamics by a mechanism reliant on chain connectivity and does not vary with chain length.

6.
Phys Rev Lett ; 122(21): 217801, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31283350

RESUMO

Interfaces play an important role in modifying the dynamics of polymers confined to the nanoscale. We demonstrate that the distance over which an interface suppresses molecular mobility in poly(styrene) thin films can be systematically increased by tens of nanometers by controlling the chain of conformation, i.e., the height of the loops in irreversibly adsorbed nanolayers. These effects arise from topological interaction between adsorbed and neighboring unadsorbed chains, respectively, which increase their motional coupling to facilitate the propagation of suppressed dynamics originating at the interface, thus highlighting the ability to manipulate interfacial effects by local conformation of chains in adsorbed nanolayers.

7.
Langmuir ; 35(46): 14890-14895, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31646872

RESUMO

A high-density poly(methyl methacrylate) (PMMA) brush (σ = 0.77 chain/nm2) with a lower molecular weight distribution was prepared onto a silicon wafer by surface-initiated atom transfer radical polymerization. The surface of the PMMA brush chains was characterized upon the process of the environmental change, from air to water, using contact angle measurements in conjunction with sum-frequency generation spectroscopy. The surface structure and properties altered less with the changing environment from air to water for the PMMA brush than for a spin-coated film; that is, the extent of surface reorganization could be suppressed by grafting densely-packed chains onto a substrate. Also, the water penetration into the brush surface was inhibited because of the densely packed chain structure.

8.
Langmuir ; 34(13): 3993-4003, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29505264

RESUMO

Thin polymer films with well-assembled fluorinated groups on their surfaces are not easily achieved via spin-coating film-fabrication methods because the solution solidifies very rapidly during spin-coating, which hinders the fluorinated moieties from segregating and organizing on the film surface. In this contribution, we have proposed a comprehensive strategy toward achieving well-ordered fluorinated thin films surfaces by optimizing the molecular organization at air/liquid interface of the film-formation solutions. To validate such a route, poly(methyl methacrylate) (PMMA) end-capped with several 2-perfluorooctylethyl methacrylate (FMA) units was employed as the model polymer for investigations. The air/solution interfacial structures were optimized by systematically changing the polymer chain structures and properties of the casting solvents. It was found that the polymers that form loosely associated aggregates (e.g., FMA1- ec-PMMA65- ec-FMA1) and a solvent with better solubility to FMA while having not too low surface tension (i.e., toluene) can combine to produce solutions with well-assembled FMA at the interfaces. By spin-coating the solutions with well-organized interfaces, an ultrathin film with perfluorinated groups that were highly oriented toward the film surface was readily achieved, exhibiting surface energies as low as 7.2 mJ/m2, which is among the lowest reported so far for the spin-coated thin films, and a very high F/C ratio (i.e., 0.98).

9.
Soft Matter ; 14(35): 7204-7213, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30131985

RESUMO

Annealing a supported polymer film in the melt state, a common practice to relieve residual stresses and erase thermal history, can result in the development of an irreversibly adsorbed nanolayer. This layer of polymer chains physically adsorbed to the substrate interface has been shown to influence thin film properties such as viscosity and glass transition temperature. Its growth is attributed to many simultaneous interactions between individual monomer units and the substrate stabilizing chains against desorption. A better understanding of how these specific polymer-substrate interactions influence the growth of the adsorbed layer is needed, particularly given how strongly the properties of geometrically-confined polymeric systems are impacted by interfaces. Here, we use homopolymers and random copolymers of styrene and methyl methacrylate to form adsorbed layers and examine the influence of chemical composition and the resulting polymer-substrate interactions on adsorbed layer growth and structure. Ellipsometric measurements reveal a non-monotonic trend between composition and thickness of the adsorbed layers that is inconsistent with the behavior normally exhibited by random copolymers, being intermediate to their respective homopolymers. We examine this trend in terms of plateau thickness and growth kinetics at two different annealing temperatures and propose a mechanism for how different polymer-substrate interactions combine to influence adsorption when copolymer films are annealed. By introducing compositional heterogeneity, this mechanism extends the study of irreversible adsorption to complex chemistries and provides for a more general understanding of how annealing should be accounted for in the proper selection and processing of polymer thin films for applications in nanotechnology.

10.
Soft Matter ; 13(13): 2426-2436, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28150841

RESUMO

The effects of the grafting densities (σp), molecular weights (Mn) and thicknesses of dry polystyrene (PS) brushes on their glass transition temperature (T) were investigated by ellipsometry. The results show that T strongly depends on the grafting density of the PS brushes. The T of the PS brushes with σp > 0.30 increases with decreasing Mn (or brush thickness) and is mainly dominated by entropic effects, in which the grafted chains are highly extended along the film thickness direction resulting in a sharp reduction in configurational entropy. The T of PS brushes with σp < 0.30 decreases with decreasing Mn (or brush thickness) which is mainly dominated by surface effects. For intermediate-density brushes (σp = 0.30), T becomes independent of Mn or brush thickness. The reason for this grafting density dependence of T is attributed to the transition of the PS brush conformation from mushroom-to-brush.

11.
Soft Matter ; 12(28): 6120-31, 2016 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-27355155

RESUMO

Despite its importance in the processing of nanomaterials, the rheological behavior of thin polymer films is poorly understood, partly due to the inherent measurement challenges. Herein, we have developed a facile method for investigating the rheological behavior of supported thin polymeric films by monitoring the growth of the "wetting ridge"-a microscopic protrusion on the film surface due to the capillary forces exerted by a drop of ionic liquid placed on the film surface. It was found that the growth dynamics of the wetting ridge and the behavior of polystyrene rheology are directly linked. Important rheological properties, such as the flow temperature (Tf), viscosity (η), and terminal relaxation time (τ0) of thin polystyrene films, can be derived by studying the development of the height of the wetting ridge with time and the sample temperature. Rheological studies using the proposed approach for supported thin polystyrene (PS) films with thickness down to 20 nm demonstrate that the PS thin film exhibits facilitated flow, with reduced viscosity and lowered viscous temperature and a shortened rubbery plateau, when SiOx-Si was used as the substrate. However, sluggish flow was observed for the PS film supported by hydrogen-passivated silicon substrates (H-Si). The differences in enthalpic interactions between PS and the substrates are the reason for this divergence in the whole-chain mobility and flow ability of thin PS films deposited on SiOx-Si and H-Si surfaces. These results indicate that this approach could be a reliable rheological probe for supported thin polymeric films with different thicknesses and various substrates.

12.
Soft Matter ; 12(40): 8348-8358, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27714375

RESUMO

To elucidate the mechanism underlying the effect of polymer/solid interfacial interactions on the dynamics of thin polymer films, the glass transition of thin end-functionalized polystyrene films supported on SiO2-Si, such as proton-terminated PS (PS-H), α,ω-dicarboxy-terminated PS (PS-COOH), and α,ω-dihydroxyl-terminated PS (PS-OH), was investigated. All the PS films exhibited a substantial depression in Tg with decreasing film thickness, while the extent of such depression was strongly dependent on the chemical structure of the end groups and molecular weights. It was found that T - T of the various PS films increased linearly with increasing hads/Rg, in which hads is the thickness of the interfacial adsorbed layer and Rg is the radius of gyration of PS. The hads/Rg is a direct reflection of the macromolecular chain conformation within the adsorbed layer which was affected by its end groups and molecular weights. These findings are in line with the work of Napolitano, and present direct experimental evidence.

13.
J Chem Phys ; 144(23): 234902, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27334189

RESUMO

Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films, with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.

14.
Soft Matter ; 11(47): 9168-78, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26415634

RESUMO

Although poly(vinyl acetate) (PVAc) differs from poly(methyl acrylate) (PMA) only in the reversed position of the ester group, a large difference in the concentration dependence of the casting solution on the corresponding surface structure of the cast films of PVAc, PMA and poly(methyl methacrylate) (PMMA) was observed. The hydrophobicity of both PMA and PMMA films increased with increasing concentration of the corresponding polymer solution, whereas cast PVAc films showed the reverse trend. The surface structure of the cast films prepared with different concentrations of the casting solution, characterized by sum frequency generation (SFG) vibrational spectra, showed that the order of the methylene groups increased while that of the acetyl methyl group decreased on the surface of cast PVAc film with increasing concentration of casting solution. However, the order of the ester methyl group increased and that of methylene groups did not change for cast PMA films with increasing concentration of casting solution. The cast PMMA film showed a reverse trend compared with the corresponding PMA film. It is apparent that well-ordered ester or acetyl methyl groups on the surface, which are oriented away from the polymer film, rather than methylene groups, play an important role in determining surface hydrophobicity, as the latter shield the OC[double bond, length as m-dash]O groups of PVAc, PMA and PMMA film surfaces from being exposed, resulting in low surface free energy. The reason for this difference is attributed to the relatively low energy for ester methyl group reorientation, an ester group structure nearer to the trans state and more regular local configuration of segments in concentrated solutions of PMA and PMMA compared to that of PVAc.


Assuntos
Polimetil Metacrilato/química , Polivinil/química , Ar , Propriedades de Superfície , Água/química
15.
Soft Matter ; 10(44): 8992-9002, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25295969

RESUMO

The effects of the properties of casting solution on the surface structure of poly(methyl methacrylate) (PMMA) films were systematically investigated. It was observed that the hydrophobicity of PMMA films increased with increasing viscosity of the corresponding polymer solution regardless of the film-formation techniques that were utilized. The ratio of the C-H symmetric stretching vibrations of methylene groups (hydrophobic components, with a peak at 2910 cm(-1)) to those of the ester methyl groups (relative hydrophilic components, with a peak at 2955 cm(-1)) from sum frequency generation (SFG) vibrational spectra, A2910/A2955, was used as a parameter to evaluate the structure on the film surface, which was related to the surface wettability of the films. The results showed that A2910/A2955 of cast PMMA films increased linearly with ηsp(0.3) (ηsp, the specific viscosity of the casting solution), whereas that of the corresponding spin-coated films showed a linear relationship defined as ηsp(0.3)E(0.26), where E is the average number of entanglement points per molecule (E = Mw/Me). These results indicate that a relative equilibrium conformation on the PMMA film surface, adopted from the perspective of thermodynamics, was easily achieved during film formation, when the conformation of the polymer chains in the corresponding casting solution was close to that in the bulk. For the spin-coated films, the chain entanglement structure in the casting solution was a more important factor for the resulting film to reach a relative equilibrium state, since this structure was in favor of maintaining the pristine conformation in casting solution under centrifugal force during spin-coating. This work may help to enhance the fundamental understanding of the formation of the film surface structure from polymer solution to the resulting solid film, which will affect not only the corresponding surface properties, but also the dynamics of the resulting thin films.

16.
Soft Matter ; 10(10): 1579-90, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24652303

RESUMO

We present an experimental investigation of the segmental relaxation behavior of polystyrene (PS) chains that are confined in a micellar core tethered by a poly(acrylic acid) (PAA) block corona on the dry film surface, along with various core density and molecular weight of PS block from below to well above the entanglement molecular weight. The results show that the onset temperature of PS chain rearrangement (T(onset)), which was much lower than the T(bulk)(g) of the corresponding PS block and higher than T(film)(g) of ultrathin PS films with corresponding thickness and molecular weights, generally increases with increasing density of the micelle core. It was found that the difference in ΔT(onset) with increasing relative density ρ/ρmin obtained from PS154-b-PAA49 and PS278-b-PAA47 micelles was large, while these from PS278-b-PAA47 and PS404-b-PAA63 was negligible, suggesting that entanglement has considerable influence on the density dependence of the T(onset) of PS chains under confinement in the micelle core on the film surface.

17.
Soft Matter ; 10(33): 6347-56, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25036734

RESUMO

The effect of the concentration of casting solutions on the surface dynamics of the corresponding spin-coated poly(methyl methacrylate) (PMMA) film was investigated by measuring the surface reorganization of fluorine tracer-labeled PMMA. The onset temperature of fluorinated PMMA chain end reorganization (T(onsetR)) was identified and is shown to depend on the PMMA concentration in the film-forming solution. It was found that the surface T(onsetR) and relaxation activation energy E(a) of the PMMA films prepared from 4.2 wt% PMMA cyclohexanone solution are 70 °C and 260 kJ mol(-1), respectively, which are higher than those of the PMMA films prepared from 0.8 wt% PMMA cyclohexanone solution (55 °C and 144 kJ mol(-1), respectively). The T(onsetR) and E(a) of PMMA films increased with increasing concentration of casting solutions within the range of 1.8 wt% to 4 wt%. The chain entanglement of PMMA chains is proposed to be the speculative origin for these observed depressed dynamics of poly(methyl methacrylate) chains on the films' surface prepared using casting solutions of various concentrations.

18.
J Phys Chem Lett ; 15(2): 357-363, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38175163

RESUMO

Polymer glasses attain thermodynamic equilibrium owing to structural relaxation at various length scales. Herein, calorimetry experiments were conducted to trace the macroscopic relaxation of slow-cooled (SC) and hyperquenched (HQ) polystyrene (PS) glasses and based on detailed comparisons with molecular dynamics probed by dye reorientation, we discussed the possible molecular process governing the equilibration of PS glasses near the glass transition temperatures (Tg). Both SC and HQ glasses equilibrate owing to the cooperative segment motion above a characteristic temperature (Tc) slightly lower than the Tg. In contrast, below the Tc, the localized backbone motion with an apparent activation energy of 290 ± 20 kJ/mol, involving approximately six repeating units, assists equilibrium recovery of PS glasses on the experimentally accessible time scales. The results possibly indicate the presence of an alternative mechanism other than the α-cooperative process controlling physical aging of materials in their deep glassy states.

19.
Eur J Pharmacol ; 953: 175825, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37269973

RESUMO

Polycystic ovary syndrome (PCOS) is characterized by reproductive, endocrine, and metabolic disorders. Icariin has been shown to regulate endocrine and metabolic imbalances. This study aimed to determine the therapeutic effect and pharmacological mechanism of icariin in PCOS rats. Rats were fed a high-fat diet and gavaged with letrozole to induce PCOS. Thirty-six female rats were randomly divided into four groups: control, model, low-dose, and high-dose icariin. After 30 days of treatment, we evaluated the therapeutic effects on weight and diet, sex hormone levels, ovarian morphology, estrous cycle, inflammatory factors, and indicators of glucolipid metabolism. Combined with the ovarian transcriptome, we verified the key markers of apoptosis and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway by RT-qPCR for mRNA level, western blot, and immunohistochemistry for protein expression. Icariin significantly improved ovarian function and reproductive endocrine disorders by regulating sex hormones, restoring the estrous cycle, and reducing ovarian morphological damage in PCOS rats. Icariin-treated rats had lower weight gain and reduced triglycerides, fasting insulin, HOMA-IR, TNF-α, and interleukin-6 with higher high-density lipoprotein cholesterol levels than PCOS rats. TUNEL staining showed icariin improved apoptosis in the ovaries. This was supported by an increase in Bcl2 and a decrease in Bad and Bax. Icariin decreased the ratios of p-JAK2/JAK2, p-STAT1/STAT1, p-STAT3/STAT3, and p-STAT5a/STAT5a, decreased IL-6, gp130 expression, and increased cytokine-inducible SH2-containing protein (CISH) and suppressor of cytokine signaling 1 (SOCS1) expression. The pharmacological mechanism may be related to the reduction in ovarian apoptosis and inhibition of the IL-6/gp130/JAK2/STATs pathway.


Assuntos
Resistência à Insulina , Síndrome do Ovário Policístico , Humanos , Ratos , Feminino , Animais , Síndrome do Ovário Policístico/induzido quimicamente , Síndrome do Ovário Policístico/tratamento farmacológico , Letrozol/efeitos adversos , Interleucina-6/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Receptor gp130 de Citocina/uso terapêutico , Hormônios Esteroides Gonadais
20.
Drug Des Devel Ther ; 17: 1289-1302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138582

RESUMO

Purpose: Our study aims to reveal the pharmacological mechanism of Astragaloside IV in the treatment of pulmonary fibrosis(PF) through network pharmacology and experimental validation. Methods: We first determined the in vivo anti-pulmonary fibrosis effect of Astragaloside IV by HE, MASSON staining, and lung coefficients, then used network pharmacology to predict the signaling pathways and molecularly docked key pathway proteins, and finally validated the results by in vivo and in vitro experiments. Results: In in vivo experiments, we found that Astragaloside IV improved body weight (P < 0.05), increased lung coefficients (P < 0.05), and reduced lung inflammation and collagen deposition in mice with pulmonary fibrosis. The network pharmacology results showed that Astragaloside IV had 104 cross-targets with idiopathic pulmonary fibrosis, and the results of KEGG enrichment analysis indicated that cellular senescence could be an important pathway for Astragaloside IV in the treatment of pulmonary fibrosis. Astragaloside IV also bound well to senescence-associated proteins, according to molecular docking results. The results of both in vivo and in vitro experiments showed that Astragaloside IV significantly inhibited senescence protein markers such as P53, P21, and P16 and delayed cellular senescence (P < 0.05). In in vivo experiments, we also found that Astragaloside IV reduced the production of SASPs (P < 0.05), and in in vitro experiments, Astragaloside IV also reduced the production of ROS. In addition, by detecting epithelial-mesenchymal transition(EMT)-related marker protein expression, we also found that Astragaloside IV significantly inhibited the development of EMT in both in vivo and in vitro experiments (P < 0.05). Conclusion: Our research found that Astragaloside IV could alleviate bleomycin-induced PF by preventing cellular senescence and EMT.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Camundongos , Animais , Simulação de Acoplamento Molecular , Farmacologia em Rede , Transição Epitelial-Mesenquimal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA