Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Cell ; 184(5): 1156-1170.e14, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33539781

RESUMO

Cultivated rice varieties are all diploid, and polyploidization of rice has long been desired because of its advantages in genome buffering, vigorousness, and environmental robustness. However, a workable route remains elusive. Here, we describe a practical strategy, namely de novo domestication of wild allotetraploid rice. By screening allotetraploid wild rice inventory, we identified one genotype of Oryza alta (CCDD), polyploid rice 1 (PPR1), and established two important resources for its de novo domestication: (1) an efficient tissue culture, transformation, and genome editing system and (2) a high-quality genome assembly discriminated into two subgenomes of 12 chromosomes apiece. With these resources, we show that six agronomically important traits could be rapidly improved by editing O. alta homologs of the genes controlling these traits in diploid rice. Our results demonstrate the possibility that de novo domesticated allotetraploid rice can be developed into a new staple cereal to strengthen world food security.


Assuntos
Produtos Agrícolas/genética , Domesticação , Oryza/genética , Sistemas CRISPR-Cas , Segurança Alimentar , Edição de Genes , Variação Genética , Genoma de Planta , Oryza/classificação , Poliploidia
2.
Mol Cell ; 71(1): 142-154.e6, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-30008318

RESUMO

Nitric oxide (NO) regulates diverse cellular signaling through S-nitrosylation of specific Cys residues of target proteins. The intracellular level of S-nitrosoglutathione (GSNO), a major bioactive NO species, is regulated by GSNO reductase (GSNOR), a highly conserved master regulator of NO signaling. However, little is known about how the activity of GSNOR is regulated. Here, we show that S-nitrosylation induces selective autophagy of Arabidopsis GSNOR1 during hypoxia responses. S-nitrosylation of GSNOR1 at Cys-10 induces conformational changes, exposing its AUTOPHAGY-RELATED8 (ATG8)-interacting motif (AIM) accessible by autophagy machinery. Upon binding by ATG8, GSNOR1 is recruited into the autophagosome and degraded in an AIM-dependent manner. Physiologically, the S-nitrosylation-induced selective autophagy of GSNOR1 is relevant to hypoxia responses. Our discovery reveals a unique mechanism by which S-nitrosylation mediates selective autophagy of GSNOR1, thereby establishing a molecular link between NO signaling and autophagy.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Autofagia , Glutationa Redutase/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Família da Proteína 8 Relacionada à Autofagia/genética , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Hipóxia Celular , Glutationa Redutase/genética
3.
Mol Cell ; 67(4): 702-710.e4, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28757206

RESUMO

Methylation and nitric oxide (NO)-based S-nitrosylation are highly conserved protein posttranslational modifications that regulate diverse biological processes. In higher eukaryotes, PRMT5 catalyzes Arg symmetric dimethylation, including key components of the spliceosome. The Arabidopsis prmt5 mutant shows severe developmental defects and impaired stress responses. However, little is known about the mechanisms regulating the PRMT5 activity. Here, we report that NO positively regulates the PRMT5 activity through S-nitrosylation at Cys-125 during stress responses. In prmt5-1 plants, a PRMT5C125S transgene, carrying a non-nitrosylatable mutation at Cys-125, fully rescues the developmental defects, but not the stress hypersensitive phenotype and the responsiveness to NO during stress responses. Moreover, the salt-induced Arg symmetric dimethylation is abolished in PRMT5C125S/prmt5-1 plants, correlated to aberrant splicing of pre-mRNA derived from a stress-related gene. These findings define a mechanism by which plants transduce stress-triggered NO signal to protein methylation machinery through S-nitrosylation of PRMT5 in response to environmental alterations.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Óxido Nítrico/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/metabolismo , Estresse Fisiológico , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Cisteína , Regulação da Expressão Gênica de Plantas , Metilação , Mutação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteômica/métodos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Transdução de Sinais
4.
Annu Rev Genet ; 48: 99-118, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25149369

RESUMO

Grain size is one of the most important factors determining rice yield. As a quantitative trait, grain size is predominantly and tightly controlled by genetic factors. Several quantitative trait loci (QTLs) for grain size have been molecularly identified and characterized. These QTLs may act in independent genetic pathways and, along with other identified genes for grain size, are mainly involved in the signaling pathways mediated by proteasomal degradation, phytohormones, and G proteins to regulate cell proliferation and cell elongation. Many of these QTLs and genes have been strongly selected for enhanced rice productivity during domestication and breeding. These findings have paved new ways for understanding the molecular basis of grain size and have substantial implications for genetic improvement of crops.


Assuntos
Grão Comestível/genética , Oryza/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Genótipo , Redes e Vias Metabólicas/genética , Fenótipo
5.
Plant Physiol ; 182(4): 1910-1919, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019874

RESUMO

Triacylglycerols (TAGs) are the major storage form of seed oil in oilseed plants. They are biosynthesized de novo in seed plastids and then transported into the endoplasmic reticulum. However, the transport mechanism for plastid fatty acids in developing seeds remains unknown. Here, we isolated two novel plastid fatty acid exporters (FATTYACID EXPORT 2 [FAX2] and FAX4, respectively) specifically abundant in seed embryos during the seed-filling stage in Arabidopsis (Arabidopsis thaliana). FAX2 and FAX4 were both localized to the chloroplast membrane. FAX2 and FAX4 loss-of-function mutations caused deficiencies in embryo and cotyledon development. Seeds of fax2fax4 double mutants exhibited significantly reduced TAG contents but elevated levels of plastid lipid contents compared with those of wild-type plants. By contrast, overexpression of FAX2 or FAX4 enhanced TAG deposition. Seed-feeding experiments showed that the two FAX proteins transported 14C-plastid fatty acids and 13C-oleic acids for TAG biosynthesis during the seed-filling stage. Together, our data demonstrate that FAX2 and FAX4 play critical roles in transporting plastid fatty acids for TAG biosynthesis during seed embryo development. These two transporters may have broad application for increasing oil yield in oilseed crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Óleos de Plantas/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Triglicerídeos/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(25): E3568-76, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27274065

RESUMO

Cytokinin is an essential phytohormone that controls various biological processes in plants. A number of response regulators are known to be important for cytokinin signal transduction. ARABIDOPSIS RESPONSE REGULATOR 4 (ARR4) mediates the cross-talk between light and cytokinin signaling through modulation of the activity of phytochrome B. However, the mechanism that regulates the activity and stability of ARR4 is unknown. Here we identify an ATP-independent serine protease, degradation of periplasmic proteins 9 (DEG9), which localizes to the nucleus and regulates the stability of ARR4. Biochemical evidence shows that DEG9 interacts with ARR4, thereby targeting ARR4 for degradation, which suggests that DEG9 regulates the stability of ARR4. Moreover, genetic evidence shows that DEG9 acts upstream of ARR4 and regulates the activity of ARR4 in cytokinin and light-signaling pathways. This study thus identifies a role for a ubiquitin-independent selective protein proteolysis in the regulation of the stability of plant signaling components.


Assuntos
Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Luz , Serina Proteases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
7.
J Integr Plant Biol ; 61(12): 1206-1223, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30663237

RESUMO

Nitric oxide (NO) is an important signaling molecule regulating diverse biological processes in all living organisms. A major physiological function of NO is executed via protein S-nitrosylation, a redox-based posttranslational modification by covalently adding a NO molecule to a reactive cysteine thiol of a target protein. S-nitrosylation is an evolutionarily conserved mechanism modulating multiple aspects of cellular signaling. During the past decade, significant progress has been made in functional characterization of S-nitrosylated proteins in plants. Emerging evidence indicates that protein S-nitrosylation is ubiquitously involved in the regulation of plant development and stress responses. Here we review current understanding on the regulatory mechanisms of protein S-nitrosylation in various biological processes in plants and highlight key challenges in this field.


Assuntos
Proteínas de Plantas/metabolismo , Óxido Nítrico/metabolismo , Nitrosação , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Plantas/imunologia , Plantas/metabolismo
8.
Plant Physiol ; 167(4): 1604-15, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25667317

RESUMO

Nitric oxide (NO) and reactive oxygen species (ROS) are two classes of key signaling molecules involved in various developmental processes and stress responses in plants. The burst of NO and ROS triggered by various stimuli activates downstream signaling pathways to cope with abiotic and biotic stresses. Emerging evidence suggests that the interplay of NO and ROS plays a critical role in regulating stress responses. However, the underpinning molecular mechanism remains poorly understood. Here, we show that NO positively regulates the activity of the Arabidopsis (Arabidopsis thaliana) cytosolic ascorbate peroxidase1 (APX1). We found that S-nitrosylation of APX1 at cysteine (Cys)-32 enhances its enzymatic activity of scavenging hydrogen peroxide, leading to the increased resistance to oxidative stress, whereas a substitution mutation at Cys-32 causes the reduction of ascorbate peroxidase activity and abolishes its responsiveness to the NO-enhanced enzymatic activity. Moreover, S-nitrosylation of APX1 at Cys-32 also plays an important role in regulating immune responses. These findings illustrate a unique mechanism by which NO regulates hydrogen peroxide homeostasis in plants, thereby establishing a molecular link between NO and ROS signaling pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Ascorbato Peroxidases/metabolismo , Regulação da Expressão Gênica de Plantas , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Ascorbato Peroxidases/genética , Citosol/metabolismo , Peróxido de Hidrogênio/metabolismo , Luz , Estresse Oxidativo , Plantas Geneticamente Modificadas , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Transdução de Sinais
9.
Plant Physiol ; 167(4): 1731-46, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25699590

RESUMO

Nitric oxide (NO) regulates multiple developmental events and stress responses in plants. A major biologically active species of NO is S-nitrosoglutathione (GSNO), which is irreversibly degraded by GSNO reductase (GSNOR). The major physiological effect of NO is protein S-nitrosylation, a redox-based posttranslational modification mechanism by covalently linking an NO molecule to a cysteine thiol. However, little is known about the mechanisms of S-nitrosylation-regulated signaling, partly due to limited S-nitrosylated proteins being identified. In this study, we identified 1,195 endogenously S-nitrosylated peptides in 926 proteins from the Arabidopsis (Arabidopsis thaliana) by a site-specific nitrosoproteomic approach, which, to date, is the largest data set of S-nitrosylated proteins among all organisms. Consensus sequence analysis of these peptides identified several motifs that contain acidic, but not basic, amino acid residues flanking the S-nitrosylated cysteine residues. These S-nitrosylated proteins are involved in a wide range of biological processes and are significantly enriched in chlorophyll metabolism, photosynthesis, carbohydrate metabolism, and stress responses. Consistently, the gsnor1-3 mutant shows the decreased chlorophyll content and altered photosynthetic properties, suggesting that S-nitrosylation is an important regulatory mechanism in these processes. These results have provided valuable resources and new clues to the studies on S-nitrosylation-regulated signaling in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Glutationa Redutase/genética , Óxido Nítrico/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , S-Nitrosoglutationa/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , Glutationa Redutase/metabolismo , Dados de Sequência Molecular , Oxirredução , Plântula/genética , Plântula/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Compostos de Sulfidrila/metabolismo
10.
Plant Physiol ; 169(2): 1179-91, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26243616

RESUMO

Panicle development, a key event in rice (Oryza sativa) reproduction and a critical determinant of grain yield, forms a branched structure containing multiple spikelets. Genetic and environmental factors can perturb panicle development, causing panicles to degenerate and producing characteristic whitish, small spikelets with severely reduced fertility and yield; however, little is known about the molecular basis of the formation of degenerating panicles in rice. Here, we report the identification and characterization of the rice panicle degenerative mutant tutou1 (tut1), which shows severe defects in panicle development. The tut1 also shows a pleiotropic phenotype, characterized by short roots, reduced plant height, and abnormal development of anthers and pollen grains. Molecular genetic studies revealed that TUT1 encodes a suppressor of cAMP receptor/Wiskott-Aldrich syndrome protein family verprolin-homologous (SCAR/WAVE)-like protein. We found that TUT1 contains conserved functional domains found in eukaryotic SCAR/WAVE proteins, and was able to activate Actin-related protein2/3 to promote actin nucleation and polymerization in vitro. Consistently, tut1 mutants show defects in the arrangement of actin filaments in trichome. These results indicate that TUT1 is a functional SCAR/WAVE protein and plays an important role in panicle development.


Assuntos
Actinas/metabolismo , Topos Floridos/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas de Arabidopsis/genética , Clonagem Molecular , Topos Floridos/fisiologia , Flores/citologia , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pólen/citologia , Pólen/genética , Pólen/crescimento & desenvolvimento , Receptores de AMP Cíclico/genética , Receptores de AMP Cíclico/metabolismo
11.
Plant Cell ; 25(10): 3841-57, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24163315

RESUMO

The phytohormone cytokinin regulates various aspects of plant growth and development, including root vascular development. In Arabidopsis thaliana, mutations in the cytokinin signaling components cause misspecification of protoxylem cell files. Auxin antagonizes cytokinin-regulated root protoxylem differentiation by inducing expression of Arabidopsis phosphotransfer protein6 (AHP6), a negative regulator of cytokinin signaling. However, the molecular mechanism of cytokinin-regulated protoxylem differentiation is not fully understood. Here, we show that a mutation in Arabidopsis fumonisin B1-resistant12 (FBR12), which encodes a eukaryotic translation initiation factor 5A, causes defective protoxylem development and reduced sensitivity to cytokinin. FBR12 genetically interacts with the cytokinin receptor cytokinin response1 (CRE1) and downstream AHP genes, as double mutants show enhanced phenotypes. FBR12 forms a protein complex with CRE1 and AHP1, and cytokinin regulates formation of this protein complex. Intriguingly, ahp6 partially suppresses the fbr12 mutant phenotype, and the fbr12 mutation causes increased expression of AHP6, indicating that FBR12 negatively regulates AHP6. Consistent with this, ectopic expression of FBR12 in the CRE1-expressing domain partially rescues defective protoxylem development in fbr12, and overexpression of AHP6 causes an fbr12-like phenotype. These results define a regulatory role of the highly conserved FBR12 in cytokinin-mediated root protoxylem specification.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Citocininas/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Mutação , Fatores de Iniciação de Peptídeos/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Xilema/crescimento & desenvolvimento , Fator de Iniciação de Tradução Eucariótico 5A
12.
J Integr Plant Biol ; 58(7): 669-78, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26564029

RESUMO

In Arabidopsis, the phytohormone abscisic acid (ABA) plays a vital role in inhibiting seed germination and in post-germination seedling establishment. In the ABA signaling pathway, ABI5, a basic Leu zipper transcription factor, has important functions in the regulation of seed germination. ABI5 protein localizes in nuclear bodies, along with AFP, COP1, and SIZ1, and was degraded through the 26S proteasome pathway. However, the mechanisms of ABI5 nuclear body formation and ABI5 protein degradation remain obscure. In this study, we found that the Arabidopsis CROWDED NUCLEI (CRWN) proteins, predicted nuclear matrix proteins essential for maintenance of nuclear morphology, also participate in ABA-controlled seed germination by regulating the degradation of ABI5 protein. During seed germination, the crwn mutants are hypersensitive to ABA and have higher levels of ABI5 protein compared to wild type. Genetic analysis suggested that CRWNs act upstream of ABI5. The observation that CRWN3 colocalizes with ABI5 in nuclear bodies indicates that CRWNs might participate in ABI5 protein degradation in nuclear bodies. Moreover, we revealed that the extreme C-terminal of CRWN3 protein is necessary for its function in the response to ABA in germination. Our results suggested important roles of CRWNs in ABI5 nuclear body organization and ABI5 protein degradation during seed germination.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Genes de Plantas , Germinação/genética , Sementes/embriologia , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Mutação/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Domínios Proteicos , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/genética
13.
Plant Physiol ; 164(3): 1515-26, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24443524

RESUMO

In higher plants, seed germination is followed by postgerminative growth. One of the key developmental events during postgerminative growth is cotyledon greening, which enables a seedling to establish photosynthetic capacity. The plant phytohormone abscisic acid (ABA) plays a vital role by inhibiting seed germination and postgerminative growth in response to dynamically changing internal and environmental cues. It has been shown that abscisic acid insensitive5 (ABI5), a basic leucine zipper transcription factor, is an important factor in the regulation of the ABA-mediated inhibitory effect on seed germination and postgerminative growth. Conversely, the phytohormone cytokinin has been proposed to promote seed germination by antagonizing the ABA-mediated inhibitory effect. However, the underpinning molecular mechanism of cytokinin-repressed ABA signaling is largely unknown. Here, we show that cytokinin specifically antagonizes ABA-mediated inhibition of cotyledon greening with minimal effects on seed germination in Arabidopsis (Arabidopsis thaliana). We found that the cytokinin-antagonized ABA effect is dependent on a functional cytokinin signaling pathway, mainly involved in the cytokinin receptor gene cytokinin response1/Arabidopsis histidine kinase4, downstream histidine phosphotransfer protein genes AHP2, AHP3, and AHP5, and a type B response regulator gene, ARR12, which genetically acts upstream of ABI5 to regulate cotyledon greening. Cytokinin has no apparent effect on the transcription of ABI5. However, cytokinin efficiently promotes the proteasomal degradation of ABI5 in a cytokinin signaling-dependent manner. These results define a genetic pathway through which cytokinin specifically induces the degradation of ABI5 protein, thereby antagonizing ABA-mediated inhibition of postgerminative growth.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cotilédone/fisiologia , Proteólise/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Cotilédone/efeitos dos fármacos , Cotilédone/crescimento & desenvolvimento , Citocininas , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo
14.
Plant Physiol ; 163(2): 1059-70, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23958864

RESUMO

LESION SIMULATING DISEASE1 (lsd1) is an important negative regulator of programmed cell death (PCD) in Arabidopsis (Arabidopsis thaliana). The loss-of-function mutations in lsd1 cause runaway cell death triggered by reactive oxygen species. lsd1 encodes a novel zinc finger protein with unknown biochemical activities. Here, we report the identification of CATALASE3 (CAT3) as an lsd1-interacting protein by affinity purification and mass spectrometry-based proteomic analysis. The Arabidopsis genome contains three homologous catalase genes (CAT1, CAT2, and CAT3). Yeast two-hybrid and coimmunoprecipitation analyses demonstrated that lsd1 interacted with all three catalases both in vitro and in vivo, and the interaction required the zinc fingers of lsd1. We found that the catalase enzymatic activity was reduced in the lsd1 mutant, indicating that the catalase enzyme activity was partially dependent on lsd1. Consistently, the lsd1 mutant was more sensitive to the catalase inhibitor 3-amino-1,2,4-triazole than the wild type, suggesting that the interaction between lsd1 and catalases is involved in the regulation of the reactive oxygen species generated in the peroxisome. Genetic studies revealed that lsd1 interacted with CATALASE genes to regulate light-dependent runaway cell death and hypersensitive-type cell death. Moreover, the accumulation of salicylic acid was required for PCD regulated by the interaction between lsd1 and catalases. These results suggest that the lsd1-catalase interaction plays an important role in regulating PCD in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Catalase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Amitrol (Herbicida)/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Catalase/antagonistas & inibidores , Catalase/química , Catalase/genética , Morte Celular/efeitos dos fármacos , Genes de Plantas/genética , Luz , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo , Dedos de Zinco
15.
Plant Physiol ; 162(1): 470-83, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23471133

RESUMO

Paraquat is one of the most widely used herbicides worldwide. In green plants, paraquat targets the chloroplast by transferring electrons from photosystem I to molecular oxygen to generate toxic reactive oxygen species, which efficiently induce membrane damage and cell death. A number of paraquat-resistant biotypes of weeds and Arabidopsis (Arabidopsis thaliana) mutants have been identified. The herbicide resistance in Arabidopsis is partly attributed to a reduced uptake of paraquat through plasma membrane-localized transporters. However, the biochemical mechanism of paraquat resistance remains poorly understood. Here, we report the identification and characterization of an Arabidopsis paraquat resistant1 (par1) mutant that shows strong resistance to the herbicide without detectable developmental abnormalities. PAR1 encodes a putative l-type amino acid transporter protein localized to the Golgi apparatus. Compared with the wild-type plants, the par1 mutant plants show similar efficiency of paraquat uptake, suggesting that PAR1 is not directly responsible for the intercellular uptake of paraquat. However, the par1 mutation caused a reduction in the accumulation of paraquat in the chloroplast, suggesting that PAR1 is involved in the intracellular transport of paraquat into the chloroplast. We identified a PAR1-like gene, OsPAR1, in rice (Oryza sativa). Whereas the overexpression of OsPAR1 resulted in hypersensitivity to paraquat, the knockdown of its expression using RNA interference conferred paraquat resistance on the transgenic rice plants. These findings reveal a unique mechanism by which paraquat is actively transported into the chloroplast and also provide a practical approach for genetic manipulations of paraquat resistance in crops.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cloroplastos/metabolismo , Complexo de Golgi/metabolismo , Herbicidas/metabolismo , Paraquat/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Transporte Biológico , Clorofila/metabolismo , Mapeamento Cromossômico , Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Resistência a Herbicidas , Mutagênese Insercional , Oryza/genética , Oryza/metabolismo , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Plântula/citologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo
16.
Plant Physiol ; 162(3): 1669-80, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23715527

RESUMO

Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in development, but their functional mechanisms remain largely unknown. Here, we characterized the cellular functions of the class I TCP transcription factor GhTCP14 from upland cotton (Gossypium hirsutum). GhTCP14 is expressed predominantly in fiber cells, especially at the initiation and elongation stages of development, and its expression increased in response to exogenous auxin. Induced heterologous overexpression of GhTCP14 in Arabidopsis (Arabidopsis thaliana) enhanced initiation and elongation of trichomes and root hairs. In addition, root gravitropism was severely affected, similar to mutant of the auxin efflux carrier PIN-FORMED2 (PIN2) gene. Examination of auxin distribution in GhTCP14-expressing Arabidopsis by observation of auxin-responsive reporters revealed substantial alterations in auxin distribution in sepal trichomes and root cortical regions. Consistent with these changes, expression of the auxin uptake carrier AUXIN1 (AUX1) was up-regulated and PIN2 expression was down-regulated in the GhTCP14-expressing plants. The association of GhTCP14 with auxin responses was also evidenced by the enhanced expression of auxin response gene IAA3, a gene in the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) family. Electrophoretic mobility shift assays showed that GhTCP14 bound the promoters of PIN2, IAA3, and AUX1, and transactivation assays indicated that GhTCP14 had transcription activation activity. Taken together, these results demonstrate that GhTCP14 is a dual-function transcription factor able to positively or negatively regulate expression of auxin response and transporter genes, thus potentially acting as a crucial regulator in auxin-mediated differentiation and elongation of cotton fiber cells.


Assuntos
Gossypium/citologia , Gossypium/genética , Ácidos Indolacéticos/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Núcleo Celular/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Gravitropismo/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Tricomas/genética , Tricomas/metabolismo
17.
J Genet Genomics ; 51(3): 326-337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37481121

RESUMO

Lipid remodeling is crucial for cold tolerance in plants. However, the precise alternations of lipidomics during cold responses remain elusive, especially in maize (Zea mays L.). In addition, the key genes responsible for cold tolerance in maize lipid metabolism have not been identified. Here, we integrate lipidomic, transcriptomic, and genetic analysis to determine the profile of lipid remodeling caused by cold stress. We find that the homeostasis of cellular lipid metabolism is essential for maintaining cold tolerance of maize. Also, we detect 210 lipid species belonging to 13 major classes, covering phospholipids, glycerides, glycolipids, and free fatty acids. Various lipid metabolites undergo specific and selective alterations in response to cold stress, especially mono-/di-unsaturated lysophosphatidic acid, lysophosphatidylcholine, phosphatidylcholine, and phosphatidylinositol, as well as polyunsaturated phosphatidic acid, monogalactosyldiacylglycerol, diacylglycerol, and triacylglycerol. In addition, we identify a subset of key enzymes, including ketoacyl-acyl-carrier protein synthase II (KAS II), acyl-carrier protein 2 (ACP2), male sterility33 (Ms33), and stearoyl-acyl-carrier protein desaturase 2 (SAD2) involved in glycerolipid biosynthetic pathways are positive regulators of maize cold tolerance. These results reveal a comprehensive lipidomic profile during the cold response of maize and provide genetic resources for enhancing cold tolerance in crops.


Assuntos
Lipidômica , Zea mays , Zea mays/genética , Lipidômica/métodos , Metabolismo dos Lipídeos/genética , Triglicerídeos , Proteínas de Transporte/metabolismo
18.
Plant Cell ; 22(4): 1232-48, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20363773

RESUMO

Cytokinin signaling is mediated by a multiple-step phosphorelay. Key components of the phosphorelay consist of the histidine kinase (HK)-type receptors, histidine phosphotransfer proteins (HP), and response regulators (RRs). Whereas overexpression of a nonreceptor-type HK gene CYTOKININ-INDEPENDENT1 (CKI1) activates cytokinin signaling by an unknown mechanism, mutations in CKI1 cause female gametophytic lethality. However, the function of CKI1 in cytokinin signaling remains unclear. Here, we characterize a mutant allele, cki1-8, that can be transmitted through female gametophytes with low frequency (approximately 0.17%). We have recovered viable homozygous cki1-8 mutant plants that grow larger than wild-type plants, show defective megagametogenesis and rarely set enlarged seeds. We found that CKI1 acts upstream of AHP (Arabidopsis HP) genes, independently of cytokinin receptor genes. Consistently, an ahp1,2-2,3,4,5 quintuple mutant, which contains an ahp2-2 null mutant allele, exhibits severe defects in megagametogenesis, with a transmission efficiency of <3.45% through female gametophytes. Rarely recovered ahp1,2-2,3,4,5 quintuple mutants are seedling lethal. Finally, the female gametophytic lethal phenotype of cki1-5 (a null mutant) can be partially rescued by IPT8 or ARR1 (a type-B Arabidopsis RR) driven by a CKI1 promoter. These results define a genetic pathway consisting of CKI1, AHPs, and type-B ARRs in the regulation of female gametophyte development and vegetative growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Citocininas/metabolismo , Óvulo Vegetal/embriologia , Proteínas Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutagênese Insercional , Mutação , Fenótipo , Proteínas Quinases/genética , RNA de Plantas/genética
19.
J Genet Genomics ; 50(7): 473-485, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37187411

RESUMO

The phytohormone auxin plays crucial roles in nearly every aspect of plant growth and development. Auxin signaling is activated through the phytohormone-induced proteasomal degradation of the Auxin/INDOLE-3-ACETIC ACID (Aux/IAA) family of transcriptional repressors. Notably, many auxin-modulated physiological processes are also regulated by nitric oxide (NO) that executes its biological effects predominantly through protein S-nitrosylation at specific cysteine residues. However, little is known about the molecular mechanisms in regulating the interactive NO and auxin networks. Here, we show that NO represses auxin signaling by inhibiting IAA17 protein degradation. NO induces the S-nitrosylation of Cys-70 located in the intrinsically disordered region of IAA17, which inhibits the TIR1-IAA17 interaction and consequently the proteasomal degradation of IAA17. The accumulation of a higher level of IAA17 attenuates auxin response. Moreover, an IAA17C70W nitrosomimetic mutation renders the accumulation of a higher level of the mutated protein, thereby causing partial resistance to auxin and defective lateral root development. Taken together, these results suggest that S-nitrosylation of IAA17 at Cys-70 inhibits its interaction with TIR1, thereby negatively regulating auxin signaling. This study provides unique molecular insights into the redox-based auxin signaling in regulating plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Dev Cell ; 58(16): 1489-1501.e5, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37413992

RESUMO

How reciprocal regulation of carbon and nitrogen metabolism works is a long-standing question. In plants, glucose and nitrate are proposed to act as signaling molecules, regulating carbon and nitrogen metabolism via largely unknown mechanisms. Here, we show that the MYB-related transcription factor ARE4 coordinates glucose signaling and nitrogen utilization in rice. ARE4 is retained in the cytosol in complexing with the glucose sensor OsHXK7. Upon sensing a glucose signal, ARE4 is released, is translocated into the nucleus, and activates the expression of a subset of high-affinity nitrate transporter genes, thereby boosting nitrate uptake and accumulation. This regulatory scheme displays a diurnal pattern in response to circadian changes of soluble sugars. The are4 mutations compromise in nitrate utilization and plant growth, whereas overexpression of ARE4 increases grain size. We propose that the OsHXK7-ARE4 complex links glucose to the transcriptional regulation of nitrogen utilization, thereby coordinating carbon and nitrogen metabolism.


Assuntos
Glucose , Oryza , Glucose/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA