Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(6): 6169-6185, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38921039

RESUMO

The protandric shrimp Hippolyte inermis is the only known marine invertebrate whose sex determination is strongly influenced by the composition of its food. In H. inermis, a sex reversal is triggered by the ingestion of diatoms of the genus Cocconeis associated with leaves of the seagrass Posidonia oceanica. These diatoms contain compounds that promote programmed cell death (PCD) in H. inermis and also in human cancer cells. Transcriptomic analyses suggested that ferroptosis is the primary trigger of the shrimp's sex reversal, leading to the rapid destruction of the androgen gland (AG) followed by a chain of apoptotic events transforming the testes into ovaries. Here, we propose a molecular approach to detect the effects of compounds stimulating the PCD. An RNA extraction method, suitable for young shrimp post-larvae (five days after metamorphosis; PL5 stage), was established. In addition, six genes involved in apoptosis, four involved in ferroptosis, and seven involved in the AG switch were mined from the transcriptome, and their expression levels were followed using real-time qPCR in PL5 fed on Cocconeis spp., compared to PL5 fed on a basic control feed. Our molecular approach, which detected early signals of sex reversal, represents a powerful instrument for investigating physiological progression and patterns of PCD in marine invertebrates. It exemplifies the physiological changes that may start a few days after the settlement of post-larvae and determine the life destiny of an individual.

2.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338963

RESUMO

The Mediterranean purple sea urchin Paracentrotus lividus (Lamarck 1816) is a remarkable model system for molecular, evolutionary and cell biology studies, particularly in the field of developmental biology. We sequenced the genome, performed a de novo assembly, and analysed the assembly content. The genome of P. lividus was sequenced using Illumina NextSeq 500 System (Illumina) in a 2 × 150 paired-end format. More than 30,000 open reading frames (ORFs), (more than 8000 are unique), were identified and analysed to provide molecular tools accessible for the scientific community. In particular, several genes involved in complex innate immune responses, oxidative metabolism, signal transduction, and kinome, as well as genes regulating the membrane receptors, were identified in the P. lividus genome. In this way, the employment of the Mediterranean sea urchin for investigations and comparative analyses was empowered, leading to the explanation of cis-regulatory networks and their evolution in a key developmental model occupying an important evolutionary position with respect to vertebrates and humans.


Assuntos
Paracentrotus , Humanos , Animais , Paracentrotus/genética , Paracentrotus/metabolismo , Imunidade Inata , Evolução Molecular
3.
Proc Biol Sci ; 290(2009): 20231327, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37876198

RESUMO

Cell death is physiologically induced by specific mediators. However, our power to trigger the process in selected cells is quite limited. The protandric shrimp Hippolyte inermis offers a possible answer. Here, we analyse a de novo transcriptome of shrimp post-larvae fed on diatoms. The sex ratio of diatom-fed shrimps versus shrimps fed on control diets was dramatically altered, demonstrating the disruption of the androgenic gland, and their transcriptome revealed key modifications in gene expression. A wide transcriptomic analysis, validated by real-time qPCR, revealed that ferroptosis represents the primary factor to re-shape the body of this invertebrate, followed by further apoptotic events, and our findings open biotechnological perspectives for controlling the destiny of selected tissues. Ferroptosis was detected here for the first time in a crustacean. In addition, this is the first demonstration of a noticeable effect prompted by an ingested food, deeply impacting the gene networks of a young metazoan, definitely determining its future physiology and sexual differentiation.


Assuntos
Diatomáceas , Ferroptose , Animais , Ácidos Graxos , Apoptose , Perfilação da Expressão Gênica , Crustáceos
4.
Mar Drugs ; 20(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35447918

RESUMO

In the last decades, it has been demonstrated that marine organisms are a substantial source of bioactive compounds with possible biotechnological applications. Marine sponges, in particular those belonging to the class of Demospongiae, have been considered among the most interesting invertebrates for their biotechnological potential. In this review, particular attention is devoted to natural compounds/extracts isolated from Demospongiae and their associated microorganisms with important biological activities for pharmacological applications such as antiviral, anticancer, antifouling, antimicrobial, antiplasmodial, antifungal and antioxidant. The data here presented show that this class of sponges is an exciting source of compounds, which are worth developing into new drugs, such as avarol, a hydroquinone isolated from the marine sponge Disidea avara, which is used as an antitumor, antimicrobial and antiviral drug.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Poríferos , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Organismos Aquáticos , Produtos Biológicos/farmacologia , Biotecnologia , Poríferos/microbiologia
5.
Mar Drugs ; 20(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36547890

RESUMO

Ocean acidification (OA) is a dramatic perturbation of seawater environments due to increasing anthropogenic emissions of CO2. Several studies indicated that OA frequently induces marine biota stress and a reduction of biodiversity. Here, we adopted the macroalga Ulva prolifera as a model and applied a complementary multi-omics approach to investigate the metabolic profiles under normal and acidified conditions. Our results show that U. prolifera grows at higher rates in acidified environments. Consistently, we observed lower sucrose and phosphocreatine concentrations in response to a higher demand of energy for growth and a higher availability of essential amino acids, likely related to increased protein biosynthesis. In addition, pathways leading to signaling and deterrent compounds appeared perturbed. Finally, a remarkable shift was observed here for the first time in the fatty acid composition of triglycerides, with a decrease in the relative abundance of PUFAs towards an appreciable increase of palmitic acid, thus suggesting a remodeling in lipid biosynthesis. Overall, our studies revealed modulation of several biosynthetic pathways under OA conditions in which, besides the possible effects on the marine ecosystem, the metabolic changes of the alga should be taken into account considering its potential nutraceutical applications.


Assuntos
Alga Marinha , Ulva , Água do Mar/química , Ecossistema , Concentração de Íons de Hidrogênio , Acidificação dos Oceanos
6.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142592

RESUMO

Metabolomics represent the set of small organic molecules generally called metabolites, which are located within cells, tissues or organisms. This new "omic" technology, together with other similar technologies (genomics, transcriptomics and proteomics) is becoming a widely used tool in cancer research, aiming at the understanding of global biology systems in their physiologic or altered conditions. Cancer is among the most alarming human diseases and it causes a considerable number of deaths each year. Cancer research is one of the most important fields in life sciences. In fact, several scientific advances have been made in recent years, aiming to illuminate the metabolism of cancer cells, which is different from that of healthy cells, as suggested by Otto Warburg in the 1950s. Studies on sponges and algae revealed that these organisms are the main sources of the marine bioactive compounds involved in drug discovery for cancer treatment and prevention. In this review, we analyzed these two promising groups of marine organisms to focus on new metabolomics approaches for the study of metabolic changes in cancer cell lines treated with chemical extracts from sponges and algae, and for the classification of the chemical structures of bioactive compounds that may potentially prove useful for specific biotechnological applications.


Assuntos
Neoplasias , Poríferos , Animais , Organismos Aquáticos/química , Biotecnologia , Humanos , Metaboloma , Neoplasias/tratamento farmacológico , Extratos Vegetais , Poríferos/química
7.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361581

RESUMO

The increase in the demand for Paracentrotus lividus roe, a food delicacy, causes increased pressure on its wild stocks. In this scenario, aquaculture facilities will mitigate the effects of anthropogenic pressures on the wild stocks of P. lividus. Consequently, experimental studies should be conducted to enhance techniques to improve efficient aquaculture practices for these animals. Here, we for the first time performed molecular investigations on cultured sea urchins. We aimed at understanding if maternal influences may significantly impact the life of future offspring, and how the culture conditions may impact the development and growth of cultured specimens. Our findings demonstrate that the outcomes of in vitro fertilization of P. lividus are influenced by maternal influences, but these effects are largely determined by culture conditions. In fact, twenty-three genes involved in the response to stress and skeletogenesis, whose expressions were measured by Real Time qPCR, were differently expressed in sea urchins cultured in two experimental conditions, and the results were largely modified in offspring deriving from two groups of females. The findings herein reported will be critical to develop protocols for the larval culture of the most common sea urchin, both for research and industrial production purposes for mass production.


Assuntos
Paracentrotus , Animais , Feminino , Paracentrotus/genética , Taxa de Sobrevida , Reprodução/genética , Larva , Expressão Gênica
8.
Mar Drugs ; 19(8)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34436283

RESUMO

In the last decades, the marine environment was discovered as a huge reservoir of novel bioactive compounds, useful for medicinal treatments improving human health and well-being. Among several marine organisms exhibiting biotechnological potential, sponges were highlighted as one of the most interesting phyla according to a wide literature describing new molecules every year. Not surprisingly, the first marine drugs approved for medical purposes were isolated from a marine sponge and are now used as anti-cancer and anti-viral agents. In most cases, experimental evidence reported that very often associated and/or symbiotic communities produced these bioactive compounds for a mutual benefit. Nowadays, beauty treatments are formulated taking advantage of the beneficial properties exerted by marine novel compounds. In fact, several biological activities suitable for cosmetic treatments were recorded, such as anti-oxidant, anti-aging, skin whitening, and emulsifying activities, among others. Here, we collected and discussed several scientific contributions reporting the cosmeceutical potential of marine sponge symbionts, which were exclusively represented by fungi and bacteria. Bioactive compounds specifically indicated as products of the sponge metabolism were also included. However, the origin of sponge metabolites is dubious, and the role of the associated biota cannot be excluded, considering that the isolation of symbionts represents a hard challenge due to their uncultivable features.


Assuntos
Cosmecêuticos/química , Poríferos , Animais , Humanos , Fitoterapia , Simbiose
9.
Mar Drugs ; 19(4)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920652

RESUMO

Physiological effects of algal metabolites is a key step for the isolation of interesting bioactive compounds. Invertebrate grazers may be fed on live diatoms or dried, pelletized, and added to compound feeds. Any method may reveal some shortcomings, due to the leaking of wound-activated compounds in the water prior to ingestion. For this reason, encapsulation may represent an important step of bioassay-guided fractionation, because it may assure timely preservation of the active compounds. Here we test the effects of the inclusion in alginate (biocompatible and non-toxic delivery system) matrices to produce beads containing two benthic diatoms for sea urchin Paracentrotus lividus feeding. In particular, we compared the effects of a diatom whose influence on P. lividus was known (Nanofrustulum shiloi) and those of a diatom suspected to be harmful to marine invertebrates, because it is often present in blooms (Striatella unipunctata). Dried N. shiloi and S. unipunctata were offered for one month after encapsulation in alginate hydrogel beads and the larvae produced by sea urchins were checked for viability and malformations. The results indicated that N. shiloi, already known for its toxigenic effects on sea urchin larvae, fully conserved its activity after inclusion in alginate beads. On the whole, benthic diatoms affected the embryogenesis of P. lividus, altering the expression of several genes involved in stress response, development, skeletogenesis and detoxification processes. Interactomic analysis suggested that both diatoms activated a similar stress response pathway, through the up-regulation of hsp60, hsp70, NF-κB, 14-3-3 ε and MDR1 genes. This research also demonstrates that the inclusion in alginate beads may represent a feasible technique to isolate diatom-derived bioactive compounds.


Assuntos
Alginatos/química , Diatomáceas/metabolismo , Paracentrotus/genética , Ração Animal , Animais , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Valor Nutritivo , Paracentrotus/crescimento & desenvolvimento , Paracentrotus/metabolismo , Mapas de Interação de Proteínas , Reprodução , Transdução de Sinais
10.
Mar Drugs ; 19(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923826

RESUMO

Cyanobacteria are a diversified phylum of nitrogen-fixing, photo-oxygenic bacteria able to colonize a wide array of environments. In addition to their fundamental role as diazotrophs, they produce a plethora of bioactive molecules, often as secondary metabolites, exhibiting various biological and ecological functions to be further investigated. Among all the identified species, cyanobacteria are capable to embrace symbiotic relationships in marine environments with organisms such as protozoans, macroalgae, seagrasses, and sponges, up to ascidians and other invertebrates. These symbioses have been demonstrated to dramatically change the cyanobacteria physiology, inducing the production of usually unexpressed bioactive molecules. Indeed, metabolic changes in cyanobacteria engaged in a symbiotic relationship are triggered by an exchange of infochemicals and activate silenced pathways. Drug discovery studies demonstrated that those molecules have interesting biotechnological perspectives. In this review, we explore the cyanobacterial symbioses in marine environments, considering them not only as diazotrophs but taking into consideration exchanges of infochemicals as well and emphasizing both the chemical ecology of relationship and the candidate biotechnological value for pharmaceutical and nutraceutical applications.


Assuntos
Organismos Aquáticos/microbiologia , Bioprospecção , Cianobactérias/metabolismo , Suplementos Nutricionais , Descoberta de Drogas , Ecossistema , Preparações Farmacêuticas/isolamento & purificação , Animais , Evolução Molecular , Humanos , Metabolismo Secundário , Simbiose
11.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206685

RESUMO

Sediment pollution is a major issue in coastal areas, potentially endangering human health and the marine environments. We investigated the short-term sublethal effects of sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) on the sea urchin Paracentrotus lividus for two months. Spiking occurred at concentrations below threshold limit values permitted by the law (TLVPAHs = 900 µg/L, TLVPCBs = 8 µg/L, Legislative Italian Decree 173/2016). A multi-endpoint approach was adopted, considering both adults (mortality, bioaccumulation and gonadal index) and embryos (embryotoxicity, genotoxicity and de novo transcriptome assembly). The slight concentrations of PAHs and PCBs added to the mesocosms were observed to readily compartmentalize in adults, resulting below the detection limits just one week after their addition. Reconstructed sediment and seawater, as negative controls, did not affect sea urchins. PAH- and PCB-spiked mesocosms were observed to impair P. lividus at various endpoints, including bioaccumulation and embryo development (mainly PAHs) and genotoxicity (PAHs and PCBs). In particular, genotoxicity tests revealed that PAHs and PCBs affected the development of P. lividus embryos deriving from exposed adults. Negative effects were also detected by generating a de novo transcriptome assembly and its annotation, as well as by real-time qPCR performed to identify genes differentially expressed in adults exposed to the two contaminants. The effects on sea urchins (both adults and embryos) at background concentrations of PAHs and PCBs below TLV suggest a need for further investigations on the impact of slight concentrations of such contaminants on marine biota.


Assuntos
Paracentrotus/efeitos dos fármacos , Paracentrotus/genética , Bifenilos Policlorados/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Animais , Anormalidades Congênitas/etiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sedimentos Geológicos , Humanos , Água do Mar/química , Transcriptoma
12.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830379

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) represent the most common pollutants in the marine sediments. Previous investigations demonstrated short-term sublethal effects of sediments polluted with both contaminants on the sea urchin Paracentrotus lividus after 2 months of exposure in mesocosms. In particular, morphological malformations observed in P. lividus embryos deriving from adults exposed to PAHs and PCBs were explained at molecular levels by de novo transcriptome assembly and real-time qPCR, leading to the identification of several differentially expressed genes involved in key physiological processes. Here, we extensively explored the genes involved in the response of the sea urchin P. lividus to PAHs and PCBs. Firstly, 25 new genes were identified and interactomic analysis revealed that they were functionally connected among them and to several genes previously defined as molecular targets of response to the two pollutants under analysis. The expression levels of these 25 genes were followed by Real Time qPCR, showing that almost all genes analyzed were affected by PAHs and PCBs. These findings represent an important further step in defining the impacts of slight concentrations of such contaminants on sea urchins and, more in general, on marine biota, increasing our knowledge of molecular targets involved in responses to environmental stressors.


Assuntos
Paracentrotus/efeitos dos fármacos , Ouriços-do-Mar/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/química , Embrião não Mamífero , Poluição Ambiental , Regulação da Expressão Gênica/efeitos dos fármacos , Sedimentos Geológicos/química , Paracentrotus/genética , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Ouriços-do-Mar/genética
13.
Mar Drugs ; 18(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629777

RESUMO

The chemical ecology of marine diatoms has been the subject of several studies in the last decades, due to the discovery of oxylipins with multiple simultaneous functions including roles in chemical defence (antipredator, allelopathic and antibacterial compounds) and/or cell-to-cell signalling. Diatoms represent a fundamental compartment of marine ecosystems because they contribute to about 45% of global primary production even if they represent only 1% of the Earth's photosynthetic biomass. The discovery that they produce several toxic metabolites deriving from the oxidation of polyunsaturated fatty acids, known as oxylipins, has changed our perspectives about secondary metabolites shaping plant-plant and plant-animal interactions in the oceans. More recently, their possible biotechnological potential has been evaluated, with promising results on their potential as anticancer compounds. Here, we focus on some recent findings in this field obtained in the last decade, investigating the role of diatom oxylipins in cell-to-cell communication and their negative impact on marine biota. Moreover, we also explore and discuss the possible biotechnological applications of diatom oxylipins.


Assuntos
Diatomáceas/metabolismo , Oceanos e Mares , Oxilipinas/metabolismo , Animais , Biotecnologia , Ecossistema , Oxilipinas/química
14.
Mar Drugs ; 18(1)2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31963814

RESUMO

Oxygenated derivatives of fatty acids, collectively called oxylipins, are a highly diverse family of lipoxygenase (LOX) products well described in planktonic diatoms. Here we report the first investigation of these molecules in four benthic diatoms, Cylindrotheca closterium, Nanofrustulum shiloi, Cocconeis scutellum, and Diploneis sp. isolated from the leaves of the seagrass Posidonia oceanica from the Gulf of Naples. Analysis by hyphenated MS techniques revealed that C. closterium, N. shiloi, and C. scutellum produce several polyunsaturated aldehydes (PUAs) and linear oxygenated fatty acids (LOFAs) related to the products of LOX pathways in planktonic species. Diploneis sp. also produced other unidentified fatty acid derivatives that are not related to LOX metabolism. The levels and composition of oxylipins in the benthic species match their negative effects on the reproductive success in the sea urchin Paracentrotus lividus. In agreement with this correlation, the most toxic species N. shiloi revealed the same LOX pathways of Skeletonema marinoi and Thalassiosira rotula, two bloom-forming planktonic diatoms that affect copepod reproduction. Overall, our data highlight for the first time a major role of oxylipins, namely LOFAs, as info-chemicals for benthic diatoms, and open new perspectives in the study of the structuring of benthic communities.


Assuntos
Diatomáceas/metabolismo , Lipoxigenases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Aldeídos/toxicidade , Alismatales , Animais , Copépodes/efeitos dos fármacos , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Oxilipinas/toxicidade , Paracentrotus/efeitos dos fármacos , Folhas de Planta
15.
Mar Drugs ; 17(1)2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30586934

RESUMO

Diatoms are unicellular eukaryotic organisms that play a key ecological and biogeochemical role in oceans as major primary producers. Recently, these microalgae have also attracted interest as a promising source of functional products with widespread relevance. Progress in the knowledge of cell and molecular biology of diatoms is envisaged as a key step to understanding regulation of their life cycle in marine environments as well as facilitating their full and profitable exploitation by biotechnological platforms. Recently, we identified sterol sulfates (StS) as regulatory molecules of cell death in the diatom Skeletonema marinoi. As these compounds may have a general role in diatom physiology and chemical signals in aquatic systems, we investigated a suitable tool for their analysis in laboratory and field samples. Herein, we describe a sensitive, fast, and efficient ultra performance liquid chromatography⁻mass spectrometry (UPLC⁻MS) method for qualitative and quantitative analysis of StS from crude extract of diatoms and other microalgae. The method was applied to 13 different strains of our collection of marine protists. This first study suggested a species-specific distribution of StS and identified the sulfated derivatives of 24-methylene cholesterol and 24-methyl cholesterol as the most common members in diatoms.


Assuntos
Fracionamento Químico/métodos , Diatomáceas/química , Microalgas/química , Esteróis/análise , Sulfatos/análise , Fracionamento Químico/instrumentação , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/instrumentação , Cromatografia de Fase Reversa/métodos , Limite de Detecção , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Especificidade da Espécie , Esteróis/química , Esteróis/isolamento & purificação , Sulfatos/química , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos
16.
J Chem Ecol ; 41(8): 766-79, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26318440

RESUMO

Several plants and invertebrates interact and communicate by means of volatile organic compounds (VOCs). These compounds may play the role of infochemicals, being able to carry complex information to selected species, thus mediating inter- or intra-specific communications. Volatile organic compounds derived from the wounding of marine diatoms, for example, carry information for several benthic and planktonic invertebrates. Although the ecological importance of VOCs has been demonstrated, both in terrestrial plants and in marine microalgae, their role as infochemicals has not been demonstrated in seagrasses. In addition, benthic communities, even the most complex and resilient, as those associated to seagrass meadows, are affected by ocean acidification at various levels. Therefore, the acidification of oceans could produce interference in the way seagrass-associated invertebrates recognize and choose their specific environments. We simulated the wounding of Posidonia oceanica leaves collected at two sites (a control site at normal pH, and a naturally acidified site) off the Island of Ischia (Gulf of Naples, Italy). We extracted the VOCs and tested a set of 13 species of associated invertebrates for their specific chemotactic responses in order to determine if: a) seagrasses produce VOCs playing the role of infochemicals, and b) their effects can be altered by seawater pH. Our results indicate that several invertebrates recognize the odor of wounded P. oceanica leaves, especially those strictly associated to the leaf stratum of the seagrass. Their chemotactic reactions may be modulated by the seawater pH, thus impairing the chemical communications in seagrass-associated communities in acidified conditions. In fact, 54% of the tested species exhibited a changed behavioral response in acidified waters (pH 7.7). Furthermore, the differences observed in the abundance of invertebrates, in natural vs. acidified field conditions, are in agreement with these behavioral changes. Therefore, leaf-produced infochemicals may influence the structure of P. oceanica epifaunal communities, and their effects can be regulated by seawater acidification.


Assuntos
Alismatales/química , Invertebrados/fisiologia , Água do Mar/química , Animais , Quimiotaxia , Mudança Climática , Concentração de Íons de Hidrogênio , Itália , Folhas de Planta/química , Compostos Orgânicos Voláteis/metabolismo
17.
Mar Drugs ; 12(1): 547-67, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24451194

RESUMO

Benthic diatoms of the genus Cocconeis contain a specific apoptogenic activity. It triggers a fast destruction of the androgenic gland in the early post-larval life of the marine shrimp Hippolyte inermis, leading to the generation of small females. Previous in vitro investigations demonstrated that crude extracts of these diatoms specifically activate a dose-dependent apoptotic process in human cancer cells (BT20 breast carcinoma) but not in human normal lymphocytes. Here, a bioassay-guided fractionation has been performed to detect the apoptogenic compound(s). Various HPLC separation systems were needed to isolate the active fractions, since the apoptogenic metabolite is highly active, present in low amounts and is masked by abundant but non-active cellular compounds. The activity is due to at least two compounds characterized by different polarities, a hydrophilic and a lipophilic fraction. We purified the lipophilic fraction, which led to the characterization of an active sub-fraction containing a highly lipophilic compound, whose molecular structure has not yet been identified, but is under investigation. The results point to the possible medical uses of the active compound. Once the molecular structure has been identified, the study and modulation of apoptotic processes in various types of cells will be possible.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diatomáceas/química , Toxinas Marinhas/farmacologia , Animais , Antineoplásicos/química , Bioensaio , Clorofila/química , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Feminino , Larva , Toxinas Marinhas/química , Penaeidae/fisiologia , Espectrofotometria Ultravioleta
18.
Mar Pollut Bull ; 205: 116584, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38878421

RESUMO

Decreasing ocean surface pH, called ocean acidification (OA), is among the major risks for marine ecosystems due to human-driven atmospheric pCO2 increase. Understanding the molecular mechanisms of adaptation enabling marine species to tolerate a lowered seawater pH could support predictions of consequences of future OA scenarios for marine life. This study examined whether the ATP-binding cassette (ABC)-like gene slr2019 confers tolerance to the marine cyanobacterium Halomicronema metazoicum to low seawater pH conditions (7.7, 7.2, 6.5) in short- and long-term exposures (7 and 30 d). Photosynthetic pigment content indicated that the species can tolerate all three lowered-pH conditions. At day 7, slr2019 was up-regulated at pH 7.7 while no changes were observed at lower pH. After 30-d exposure, a significant decrease in slr2019 transcript levels was observed in all low-pH treatments. These first results indicate an effect of low pH on the examined transporter expression in H. metazoicum.

19.
Sci Total Environ ; 929: 172586, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38657802

RESUMO

In the last years biodegradable polymers (BPs) were largely used as real opportunity to solve plastic pollution. Otherwise, their wide use in commercial products, such as packaging sector, is causing a new pollution alarm, mainly because few data reported about their behaviour in the environment and toxicity on marine organisms. Our previous results showed that embryos of the sea urchin Paracentrotus lividus (Lmk) exposed to poly(ε-caprolactone) (PCL), poly(3-hydroxybutyrate) (PHB) and poly(lactic acid) (PLA) showed delay of their development and morphological malformations, also affecting at the molecular levels the expression of several genes involved in different functional responses. In the present work for the first time, we tested the effects of five microplastics (MPs) obtained from BPs such as PBS, poly(butylene succinate), PBSA, poly(butylene succinate-co-butylene adipate), PCL, PHB and PLA, upon grazing activity of the sea urchin revealed by: i. histological analysis seeing at the gonadic tissues; ii. morphological analysis of the deriving embryos; iii. molecular analyses on these embryos to detect variations of the gene expression of eighty-seven genes involved in stress response, detoxification, skeletogenesis, differentiation and development. All these results will help in understanding how MP accumulated inside various organs in the adult sea urchins, and more in general in marine invertebrates, could represent risks for the marine environment.


Assuntos
Paracentrotus , Poliésteres , Poluentes Químicos da Água , Animais , Paracentrotus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Plásticos Biodegradáveis , Embrião não Mamífero/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Polímeros
20.
Biotechnol Adv ; 68: 108235, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567398

RESUMO

Cyanotoxins are by definition "harmful agents" produced by cyanobacteria. Their toxicity has been extensively studied and reviewed over the years. Cyanotoxins have been commonly classified, based on their poisonous effects on mammals, into three main classes, neurotoxins, hepatotoxins and dermatotoxins, and, considering their chemical features, mainly identified as peptides, alkaloids and lipopolysaccharides. Here we propose a broader subdivision of cyanotoxins into eight distinct classes, taking into account their molecular structures, biosynthesis and modes of action: alkaloids, non-ribosomal peptides, polyketides, non-protein amino acids, indole alkaloids, organophosphates, lipopeptides and lipoglycans. For each class, the structures and primary mechanisms of toxicity of the main representative cyanotoxins are reported. Despite their powerful biological activities, only recently scientists have considered the biotechnological potential of cyanotoxins, and their applications both in medical and in industrial settings, even if only a few of these have reached the biotech market. In this perspective, we discuss the potential uses of cyanotoxins as anticancer, antimicrobial, and biocidal agents, as common applications for cytotoxic compounds. Furthermore, taking into account their mechanisms of action, we describe peculiar potential bioactivities for several cyanotoxin classes, such as local anaesthetics, antithrombotics, neuroplasticity promoters, immunomodulating and antifouling agents. In this review, we aim to stimulate research on the potential beneficial roles of cyanotoxins, which require interdisciplinary cooperation to facilitate the discovery of innovative biotechnologies.


Assuntos
Alcaloides , Toxinas Bacterianas , Cianobactérias , Animais , Toxinas de Cianobactérias , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Microcistinas/toxicidade , Microcistinas/química , Microcistinas/metabolismo , Cianobactérias/metabolismo , Alcaloides/metabolismo , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA