Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 29(11): 16710-16726, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154228

RESUMO

We synthesize colloidal HgSe quantum dots and characterize their nonlinear refraction and nonlinear absorption using a Nd:YAG laser and its second harmonic. The 7.5 nm quantum dots were synthesized using the hot-injection method. The nonlinear absorption (ß = 9×10-7 cm W-1) and negative nonlinear refraction (γ = -5×10-12 cm2 W-1) coefficients of colloidal quantum dots were determined using the 10 ns, 532 nm laser radiation. The joint influence of above processes was realized at a higher intensity of probe pulses. In the case of 10 ns, 1064 nm radiation, only negative nonlinear refraction dominated during z-scans of these quantum dots. The studies of optical limiting using two laser sources demonstrated the effectiveness of this process at 532 nm. The role of nonlinear scattering is analyzed. We discuss the mechanisms responsible for the nonlinear refraction processes in colloidal HgSe quantum dots.

2.
Genetica ; 147(1): 91-101, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30783944

RESUMO

Cultivated grapevine (Vitis vinifera L. ssp. sativa D.C.) is one of the oldest agricultural crops, each variety comprising an array of clones obtained by vegetative propagation from a selected vine grown from a single seedling. Most clones within a variety are identical, but some show a different form of accession, giving rise to new divergent phenotypes. Understanding the associations among the genotypes within a variety is crucial to efficient management and effective grapevine improvement. Inter-primer binding-site (iPBS) markers may aid in determining the new clones inside closely related genotypes. Following this idea, iPBS markers were used to assess the genetic variation of 33 grapevine genotypes collected from Russia. We used molecular markers to identify the differences among and within five grapevine clonal populations and analysed the variation, using clustering and statistical approaches. Four of a total of 30 PBS primers were selected, based on amplification efficiency. Polymerase chain reaction (PCR) with PBS primers resulted in a total of 1412 bands ranging from 300 to 6000 bp, with a polymorphism ratio of 44%, ranging from 58 to 75 bands per group. In total, were identified seven private bands in 33 genotypes. Results of molecular variance analysis showed that 40% of the total variation was observed within groups and only 60% between groups. Cluster analysis clearly showed that grapevine genotypes are highly divergent and possess abundant genetic diversities. The iPBS PCR-based genome fingerprinting technology used in this study effectively differentiated genotypes into five grapevine groups and indicated that iPBS markers are useful tools for clonal selection. The number of differences between clones was sufficient to identify them as separate clones of studied varieties containing unique mutations. Our previous phenotypic and phenological studies have confirmed that these genotypes differ from those of maternal plants. This work emphasized the need for a better understanding of the genotypic differences among closely related varieties of grapevine and has implications for the management of its selection processes.


Assuntos
Genótipo , Filogenia , Polimorfismo Genético , Vitis/genética , Especiação Genética , Sequências Repetitivas de Ácido Nucleico , Seleção Genética , Vitis/classificação
3.
Nanomedicine ; 15(1): 37-46, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30240826

RESUMO

Unmodified hydrated С60 fullerene molecules (C60UHFM) were shown to reduce the formation ROS in water and 8-oxoguanine in DNA upon ionizing radiation impact. C60UHFM efficiently eliminate long-lived protein radicals arising after irradiation. In irradiated mice C60UHFM reduce the rate of single/double-strand DNA breaks and amount of chromosomal breaks. The radioprotective activity of C60UHFM was estimated by the survival rate of animals; the dose modification factor for animal survival was 1.3. Hematological tests showed that C60UHFM injection in mice prior to irradiation results in a decrement of irradiation-induced leucopenia and thrombocytopenia. Histological analysis testified that C60UHFM provide significant protection of small intestine tissues in mice against irradiation-induced damage. The obtained data assume that the radioprotective properties of C60UHFM are determined by their antioxidant, antiradical and DNA-protective qualities. Thus, it was demonstrated that C60UHFM are a novel antioxidant and radioprotective agent capable of substantial reduction of the harmful effects of ionizing radiation.


Assuntos
Antioxidantes/farmacologia , Dano ao DNA , Fulerenos/farmacologia , Estresse Oxidativo , Proteínas/química , Protetores contra Radiação/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Masculino , Camundongos , Camundongos Pelados , Radiação Ionizante
4.
Opt Express ; 26(26): 35013-35025, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650916

RESUMO

In the past, common media for high-order harmonic generation (HHG) has been atoms and molecules. More recently, clusters, and nanoparticles have been introduced as HHG emitting media. Multi-particle media can enhance HHG yields but have more stringent requirements in determining the optimal parameters. Here, we demonstrate, for the first time, the effective application of 1-3 nm metal sulfide quantum dots (QDs) for harmonic generation in the 20 - 115 nm extreme ultraviolet range. We report on the syntheses, ablation of Ag2S, CdS, and ZnS QDs, and HHG from laser-produced plasmas by using single- and two-color pumps. We compare HHG efficiency from the ablated QDs to that of bulk metal sulfides and show a seven-fold increase in harmonic yields. Further, the study also allows us to understand the effects of QD-contained plasma spreading dynamics on HHG yield.

5.
Theor Appl Genet ; 124(2): 277-86, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21947344

RESUMO

The Rpv3 locus is a major determinant of downy mildew resistance in grapevine (Vitis spp.). A selective sweep at this locus was revealed by the DNA genotyping of 580 grapevines, which include a highly diverse set of 265 European varieties that predated the spread of North American mildews, 82 accessions of wild species, and 233 registered breeding lines with North American ancestry produced in the past 150 years. Artificial hybridisation and subsequent phenotypic selection favoured a few Rpv3 haplotypes that were introgressed from wild vines and retained in released varieties. Seven conserved haplotypes in five descent groups of resistant varieties were traced back to their founders: (1) 'Munson', a cross between two of Hermann Jaeger's selections of V. rupestris and V. lincecumii made in the early 1880s in Missouri, (2) V. rupestris 'Ganzin', first utilised for breeding in 1879 by Victor Ganzin in France, (3) 'Noah', selected in 1869 from intermingled accessions of V. riparia and V. labrusca by Otto Wasserzieher in Illinois, (4) 'Bayard', a V. rupestris × V. labrusca offspring generated in 1882 by George Couderc in France, and (5) a wild form closely related to V. rupestris accessions in the Midwestern United States and introgressed into 'Seibel 4614' in the 1880s by Albert Seibel in France. Persistence of these Rpv3 haplotypes across many of the varieties generated by human intervention indicates that a handful of vines with prominent resistance have laid the foundation for modern grape breeding. A rampant hot spot of NB-LRR genes at the Rpv3 locus has provided a distinctive advantage for the adaptation of native North American grapevines to withstand downy mildew. The coexistence of multiple resistance alleles or paralogues in the same chromosomal region but in different haplotypes counteracts efforts to pyramidise them in a diploid individual via conventional breeding.


Assuntos
Cruzamento/métodos , Resistência à Doença/genética , Genes de Plantas/genética , Oomicetos , Doenças das Plantas/microbiologia , Seleção Genética , Vitis/genética , Genótipo , Haplótipos/genética , Repetições de Microssatélites/genética , Linhagem , Doenças das Plantas/genética
6.
Polymers (Basel) ; 14(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35335594

RESUMO

In this paper we consider the initial-boundary value problem describing the motion of weakly concentrated aqueous polymer solutions. The model involves the regularized Jaumann's derivative in the rheological relation. Also this model is considered with non-linear viscosity. On the basis of the topological approximation approach to the study of hydrodynamics problems the existence of weak solutions is proved. Also we consider an optimal feedback control problem for this initial-boundary value problem. The existence of an optimal solution minimizing a given performance functional is proved.

7.
Nanomaterials (Basel) ; 12(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35457972

RESUMO

The authors report the third-harmonic generation, nonlinear refraction, and nonlinear absorption in HgS quantum dot (QD) suspensions and films using the nanosecond and femtosecond pulses. High conversion efficiency (7 × 10-4) towards the third harmonic (TH) of the 900-1700 nm, 150 fs laser in the thin (70 nm) films containing HgS QDs deposited on the glass substrates is obtained. The authors analyze spectral dependencies of the TH, nonlinear refractive indices, and nonlinear absorption coefficients of QDs in the 500-1700 nm range and discuss the relation between the TH process and the low-order nonlinear optical properties of these quantum dots.

8.
Nanomaterials (Basel) ; 11(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064198

RESUMO

InP@ZnS core-shell colloidal quantum dots (CQDs) were synthesized and characterized using the z-scan technique. The nonlinear refraction and nonlinear absorption coefficients (γ = -2 × 10-12 cm2 W-1, ß = 4 × 10-8 cm W-1) of these CQDs were determined using 10 ns, 532 nm pulses. The saturable absorption (ß = -1.4 × 10-9 cm W-1, Isat = 3.7 × 108 W cm-2) in the 3.5 nm CQDs dominated at small intensities of the probe pulses (I ≤ 7 × 107 W cm-2) followed by reverse saturable absorption at higher laser intensities. We report the optical limiting studies using these CQDs showing the suppression of propagated nanosecond radiation in the intensity range of 8 × 107-2 × 109 W cm-2. The role of nonlinear scattering is considered using off-axis z-scan scheme, which demonstrated the insignificant role of this process along the whole range of used intensities of 532 nm pulses. We discuss the thermal nature of the negative nonlinear refraction in the studied species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA