Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Geriatr ; 24(1): 287, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539089

RESUMO

BACKGROUND: Fragility fractures in older adults are often caused by fall events. The estimation of an expected fall rate might improve the identification of individuals at risk of fragility fractures and improve fracture prediction. METHODS: A combined analysis of three previously developed fall rate models using individual participant data (n = 1850) was conducted using the methodology of a two-stage meta-analysis to derive an overall model. These previously developed models included the fall history as a predictor recorded as the number of experienced falls within 12 months, treated as a factor variable with the levels 0, 1, 2, 3, 4 and ≥ 5 falls. In the first stage, negative binomial regression models for every cohort were fit. In the second stage, the coefficients were compared and used to derive overall coefficients with a random effect meta-analysis. Additionally, external validation was performed by applying the three data sets to the models derived in the first stage. RESULTS: The coefficient estimates for the prior number of falls were consistent among the three studies. Higgin's I2 as heterogeneity measure ranged from 0 to 55.39%. The overall coefficient estimates indicated that the expected fall rate increases with an increasing number of previous falls. External model validation revealed that the prediction errors for the data sets were independent of the model to which they were applied. CONCLUSION: This analysis suggests that the fall history treated as a factor variable is a robust predictor of estimating future falls among different cohorts.


Assuntos
Fraturas Ósseas , Vida Independente , Humanos , Idoso
2.
BMC Geriatr ; 23(1): 200, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997882

RESUMO

BACKGROUND: Around a third of adults aged 65 and older fall every year, resulting in unintentional injuries in 30% of the cases. Fractures are a frequent consequence of falls, primarily caused in individuals with decreased bone strength who are unable to cushion their falls. Accordingly, an individual's number of experienced falls has a direct influence on fracture risk. The aim of this study was the development of a statistical model to predict future fall rates using personalized risk predictors. METHODS: In the prospective cohort GERICO, several fall risk factor variables were collected in community-dwelling older adults at two time-points four years apart (T1 and T2). Participants were asked how many falls they experienced during 12 months prior to the examinations. Rate ratios for the number of reported falls at T2 were computed for age, sex, reported fall number at T1, physical performance tests, physical activity level, comorbidity and medication number with negative binomial regression models. RESULTS: The analysis included 604 participants (male: 122, female: 482) with a median age of 67.90 years at T1. The mean number of falls per person was 1.04 and 0.70 at T1 and T2. The number of reported falls at T1 as a factor variable was the strongest risk factor with an unadjusted rate ratio [RR] of 2.60 for 3 falls (95% confidence interval [CI] 1.54 to 4.37), RR of 2.63 (95% CI 1.06 to 6.54) for 4 falls, and RR of 10.19 (95% CI 6.25 to 16.60) for 5 and more falls, when compared to 0 falls. The cross-validated prediction error was comparable for the global model including all candidate variables and the univariable model including prior fall numbers at T1 as the only predictor. CONCLUSION: In the GERICO cohort, the prior fall number as single predictor information for a personalized fall rate is as good as when including further available fall risk factors. Specifically, individuals who have experienced three and more falls are expected to fall multiple times again. TRIAL REGISTRATION: ISRCTN11865958, 13/07/2016, retrospectively registered.


Assuntos
Fraturas Ósseas , Vida Independente , Humanos , Masculino , Feminino , Idoso , Estudos Prospectivos , Fatores de Risco
3.
Int J Legal Med ; 134(2): 553-563, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30891630

RESUMO

The formation of skull fractures is an important topic in legal medicine. In particular, the influence of boundary conditions is controversially discussed in the literature. A study focusing solely on this aspect was missing. This study aimed to investigate the influence of boundary conditions on the energy threshold for head fractures. Because of the great variability of biological tissue of real skulls, we opted for a head model made from a polyurethane sphere filled with gelatin. Furthermore, we decided to investigate two opposite situations: A fixed configuration where a model was placed on a rigid surface and a (quasi) free boundary configuration where the head model was held at a force of 5 N compensating for gravity. For both configurations, we determined the acceleration signal of the impactor, the force, and the energy threshold for head fracture. It turned out that the fracture forces for both configurations were the same whereas the energy threshold was 11.0 J for the fixed and 13.6 J for the free boundary. The difference seems to be negligible if compared to the effect of varying structural mechanical properties of real human heads. This means that in a forensic case, the two situations most probably cannot be distinguished. To investigate the influence of the impactor mass, we developed a mathematical model and fitted the experimental data. As a result, we found that in the free configuration, a larger mass increases the energy threshold for head fracture. So that in principle, the two configurations are distinguishable.


Assuntos
Aceleração , Patologia Legal , Gravitação , Traumatismos Cranianos Fechados , Fraturas Cranianas , Crânio/lesões , Fenômenos Biomecânicos , Humanos , Modelos Anatômicos , Modelos Teóricos , Reprodutibilidade dos Testes
4.
J Biomech Eng ; 142(12)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32909597

RESUMO

Titanium implants are widely used in dental and orthopedic surgeries. However, implant failures still occur because of a lack of implant stability. The biomechanical properties of bone tissue located around the implant need to be assessed to better understand the osseointegration phenomena and anticipate implant failure. The aim of this study was to explore the spatiotemporal variation of the microscopic elastic properties of newly formed bone tissue close to an implant. Eight coin-shaped Ti6Al4V implants were inserted into rabbit tibiae for 7 and 13 weeks using an in vivo model allowing the distinction between mature and newly formed bone in a standardized configuration. Nanoindentation and micro-Brillouin scattering measurements were carried out in similar locations to measure the indentation modulus and the wave velocity, from which relative variations of bone mass density were extracted. The indentation modulus, the wave velocity and mass density were found to be higher (1) in newly formed bone tissue located close to the implant surface, compared to mature cortical bone tissue, and (2) after longer healing time, consistently with an increased mineralization. Within the bone chamber, the spatial distribution of elastic properties was more heterogeneous for shorter healing durations. After 7 weeks of healing, bone tissue in the bone chamber close to the implant surface was 12.3% denser than bone tissue further away. Bone tissue close to the chamber edge was 16.8% denser than in its center. These results suggest a bone spreading pathway along tissue maturation, which is confirmed by histology and consistent with contact osteogenesis phenomena.


Assuntos
Ligas , Osseointegração , Titânio , Animais , Interface Osso-Implante , Próteses e Implantes , Coelhos
5.
Knee Surg Sports Traumatol Arthrosc ; 26(12): 3582-3592, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29858655

RESUMO

PURPOSE: Dynamic intraligamentary stabilization (DIS) is a primary repair technique for acute anterior cruciate ligament (ACL) tears. For internal bracing of the sutured ACL, a metal spring with 8 mm maximum length change is preloaded with 60-80 N and fixed to a high-strength polyethylene braid. The bulky tibial hardware results in bone loss and may cause local discomfort with the necessity of hardware removal. The technique has been previously investigated biomechanically; however, the amount of spring shortening during movement of the knee joint is unknown. Spring shortening is a crucial measure, because it defines the necessary dimensions of the spring and, therefore, the overall size of the implant. METHODS: Seven Thiel-fixated human cadaveric knee joints were subjected to passive range of motion (flexion/extension, internal/external rotation in 90° flexion, and varus/valgus stress in 0° and 20° flexion) and stability tests (Lachman/KT-1000 testing in 0°, 15°, 30°, 60°, and 90° flexion) in the ACL-intact, ACL-transected, and DIS-repaired state. Kinematic data of femur, tibia, and implant spring were recorded with an optical measurement system (Optotrak) and the positions of the bone tunnels were assessed by computed tomography. Length change of bone tunnel distance as a surrogate for spring shortening was then computed from kinematic data. Tunnel positioning in a circular zone with r = 5 mm was simulated to account for surgical precision and its influence on length change was assessed. RESULTS: Over all range of motion and stability tests, spring shortening was highest (5.0 ± 0.2 mm) during varus stress in 0° knee flexion. During flexion/extension, spring shortening was always highest in full extension (3.8 ± 0.3 mm) for all specimens and all simulations of bone tunnels. Tunnel distance shortening was highest (0.15 mm/°) for posterior femoral and posterior tibial tunnel positioning and lowest (0.03 mm/°) for anterior femoral and anterior tibial tunnel positioning. CONCLUSION: During passive flexion/extension, the highest spring shortening was consistently measured in full extension with a continuous decrease towards flexion. If preloading of the spring is performed in extension, the spring can be downsized to incorporate a maximum length change of 5 mm resulting in a smaller implant with less bone sacrifice and, therefore, improved conditions in case of revision surgery.


Assuntos
Reconstrução do Ligamento Cruzado Anterior/instrumentação , Reconstrução do Ligamento Cruzado Anterior/métodos , Fenômenos Biomecânicos/fisiologia , Articulação do Joelho/fisiologia , Idoso , Idoso de 80 Anos ou mais , Lesões do Ligamento Cruzado Anterior/cirurgia , Cadáver , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular/fisiologia
6.
Knee Surg Sports Traumatol Arthrosc ; 26(5): 1392-1398, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29124286

RESUMO

PURPOSE: The aim of this study was to perform a comprehensive biomechanical examination of frequently applied femoral cortical suspension devices, comparing the properties of both fixed and adjustable fixation mechanisms. It was hypothesized that adjustable loop devices demonstrate less consistent fixation properties with increased variability compared to fixed loop devices. METHODS: Nine frequently applied fixation button types were tested, six adjustable and three rigid loop devices. Six samples of each device type were purchased. Each device was installed in a servo-hydraulic mechanical testing machine, running a 2000 cycle loading protocol at force increments between 50 and 500 N. Irreversible displacement in mm was measured for all of the tested samples of each implant. Ultimately, maximum load to failure was applied and measured in Nm. An irreversible displacement of 3 mm was considered failure of the implant. RESULTS: Three of the six adjustable devices (GraftMax™, TightRope® ToggleLoc™) demonstrated a median displacement above the threshold of clinical failure before completion of the cycles. All adjustable loop devices showed a wide intragroup variation in terms of irreversible displacement, compared to fixed-loop devices. Fixed-loop devices provided consistent reproducible results with narrow ranges and significantly lower irreversible displacement (p < 0.05), the maximum being 1.4 mm. All devices withstood an ultimate force of more than 500 N. CONCLUSION: Adjustable loop devices still show biomechanical inferiority and demonstrate heterogeneity of fixation properties with wide- and less-reproducible displacement ranges resultant to the mechanism of adjustment, denoting less reliability. However, three adjustable devices (RIGIDLOOP™ Adjustable, Ultrabutton ◊, ProCinch™) demonstrate fixation capacities within the margins of clinical acceptance. RIGIDLOOP™ Adjustable provides the most comparable fixation properties to fixed loop devices.


Assuntos
Reconstrução do Ligamento Cruzado Anterior/instrumentação , Dispositivos de Fixação Ortopédica , Fenômenos Biomecânicos , Desenho de Equipamento , Humanos , Reprodutibilidade dos Testes
7.
Curr Osteoporos Rep ; 14(6): 374-385, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27714581

RESUMO

Beyond bone mineral density (BMD), bone quality designates the mechanical integrity of bone tissue. In vivo images based on X-ray attenuation, such as CT reconstructions, provide size, shape, and local BMD distribution and may be exploited as input for finite element analysis (FEA) to assess bone fragility. Further key input parameters of FEA are the material properties of bone tissue. This review discusses the main determinants of bone mechanical properties and emphasizes the added value, as well as the important assumptions underlying finite element analysis. Bone tissue is a sophisticated, multiscale composite material that undergoes remodeling but exhibits a rather narrow band of tissue mineralization. Mechanically, bone tissue behaves elastically under physiologic loads and yields by cracking beyond critical strain levels. Through adequate cell-orchestrated modeling, trabecular bone tunes its mechanical properties by volume fraction and fabric. With proper calibration, these mechanical properties may be incorporated in quantitative CT-based finite element analysis that has been validated extensively with ex vivo experiments and has been applied increasingly in clinical trials to assess treatment efficacy against osteoporosis.


Assuntos
Remodelação Óssea , Osso e Ossos/diagnóstico por imagem , Fenômenos Biomecânicos , Densidade Óssea , Osso e Ossos/anatomia & histologia , Osso e Ossos/fisiologia , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/fisiologia , Osso Cortical/diagnóstico por imagem , Osso Cortical/fisiologia , Análise de Elementos Finitos , Humanos , Tamanho do Órgão , Estresse Mecânico , Tomografia Computadorizada por Raios X , Suporte de Carga
8.
Clin Orthop Relat Res ; 474(12): 2633-2640, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27535284

RESUMO

BACKGROUND: Osteochondroplasty of the head-neck region is performed on patients with cam femoroacetabular impingement (FAI) without fully understanding its repercussion on the integrity of the femur. Cam-type FAI can be surgically and reproducibly induced in the ovine femur, which makes it suitable for studying corrective surgery in a consistent way. Finite element models built on quantitative CT (QCT) are computer tools that can be used to predict femoral strength and evaluate the mechanical effect of surgical correction. QUESTIONS/PURPOSES: We asked: (1) What is the effect of a resection of the superolateral aspect of the ovine femoral head-neck junction on failure load? (2) How does the failure load after osteochondroplasty compare with reported forces from activities of daily living in sheep? (3) How do failure loads and failure locations from the computer simulations compare with the experiments? METHODS: Osteochondroplasties (3, 6, 9 mm) were performed on one side of 18 ovine femoral pairs with the contralateral intact side as a control. The 36 femurs were scanned via QCT from which specimen-specific computer models were built. Destructive compression tests then were conducted experimentally using a servohydraulic testing system and numerically via the computer models. Safety factors were calculated as the ratio of the maximal force measured in vivo by telemeterized hip implants during the sheep's walking and running activities to the failure load. The simulated failure loads and failure locations from the computer models were compared with the experimental results. RESULTS: Failure loads were reduced by 5% (95% CI, 2%-8%) for the 3-mm group (p = 0.0089), 10% (95% CI, 6%-14%) for the 6-mm group (p = 0.0015), and 19% (95% CI, 13%-26%) for the 9-mm group (p = 0.0097) compared with the controls. Yet, the weakest specimen still supported more than 2.4 times the peak load during running. Strong correspondence was found between the simulated and experimental failure loads (R2 = 0.83; p < 0.001) and failure locations. CONCLUSIONS: The resistance of ovine femurs to fracture decreased with deeper resections. However, under in vitro testing conditions, the effect on femoral strength remains small even after 9 mm correction, suggesting that femoral head-neck osteochondroplasty could be done safely on the ovine femur. QCT-based finite element models were able to predict weakening of the femur resulting from the osteochondroplasty. CLINICAL RELEVANCE: The ovine femur provides a seemingly safe platform for scientific evaluation of FAI. It also appears that computer models based on preoperative CT scans may have the potential to provide patient-specific guidelines for preventing overcorrection of cam FAI.


Assuntos
Simulação por Computador , Impacto Femoroacetabular/cirurgia , Fraturas do Colo Femoral/prevenção & controle , Cabeça do Fêmur/cirurgia , Colo do Fêmur/cirurgia , Análise de Elementos Finitos , Modelos Biológicos , Procedimentos Ortopédicos , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Feminino , Impacto Femoroacetabular/fisiopatologia , Fraturas do Colo Femoral/etiologia , Fraturas do Colo Femoral/fisiopatologia , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/fisiopatologia , Colo do Fêmur/diagnóstico por imagem , Colo do Fêmur/fisiopatologia , Procedimentos Ortopédicos/efeitos adversos , Osteotomia , Fatores de Risco , Ovinos , Estresse Mecânico , Tomografia de Coerência Óptica , Falha de Tratamento
9.
Nat Mater ; 13(7): 740-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24907926

RESUMO

Ageing societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the hierarchical organization of bone. Here, we investigate the mechanical response under monotonic and cyclic compression of both single osteonal lamellae and macroscopic samples containing numerous osteons. Micropillar compression tests in a scanning electron microscope, microindentation and macroscopic compression tests were performed on dry ovine bone to identify the elastic modulus, yield stress, plastic deformation, damage accumulation and failure mechanisms. We found that isolated lamellae exhibit a plastic behaviour, with higher yield stress and ductility but no damage. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behaviour of bone at the microscale to a quasi-brittle response driven by the growth of cracks along interfaces or in the vicinity of pores at the macroscale.


Assuntos
Osso e Ossos/fisiologia , Força Compressiva , Animais , Fenômenos Biomecânicos , Osso e Ossos/ultraestrutura , Microscopia Eletrônica de Varredura , Ovinos/anatomia & histologia , Ovinos/fisiologia , Estresse Mecânico
10.
J Clin Densitom ; 18(3): 338-58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26277851

RESUMO

The International Society for Clinical Densitometry (ISCD) has developed new official positions for the clinical use of quantitative computed tomography of the hip. The ISCD task force for quantitative computed tomography reviewed the evidence for clinical applications and presented a report with recommendations at the 2015 ISCD Position Development Conference. Here, we discuss the agreed on ISCD official positions with supporting medical evidence, rationale, controversy, and suggestions for further study. Parts II and III address the advanced techniques of finite element analysis applied to computed tomography scans and the clinical feasibility of existing techniques for opportunistic screening of osteoporosis using computed tomography scans obtained for other diagnosis such as colonography was addressed.


Assuntos
Acetábulo/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Fraturas Ósseas/etiologia , Osteoporose/diagnóstico , Tomografia Computadorizada por Raios X , Absorciometria de Fóton , Adulto , Densidade Óssea , Consenso , Humanos , Osteoporose/complicações , Guias de Prática Clínica como Assunto , Medição de Risco , Sociedades Médicas
11.
J Clin Densitom ; 18(3): 359-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26277852

RESUMO

The International Society for Clinical Densitometry (ISCD) has developed new official positions for the clinical use of quantitative computed tomography (QCT)-based finite element analysis of the spine and hip. The ISCD task force for QCT reviewed the evidence for clinical applications and presented a report with recommendations at the 2015 ISCD Position Development Conference. Here we discuss the agreed upon ISCD official positions with supporting medical evidence, rationale, controversy, and suggestions for further study. Parts I and III address the clinical use of QCT of the hip, and the clinical feasibility of existing techniques for opportunistic screening of osteoporosis using CT scans obtained for other diagnosis such as colonography was addressed.


Assuntos
Acetábulo/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Análise de Elementos Finitos , Vértebras Lombares/diagnóstico por imagem , Osteoporose/diagnóstico , Tomografia Computadorizada por Raios X , Absorciometria de Fóton , Adulto , Densidade Óssea , Consenso , Fraturas Ósseas/diagnóstico , Fraturas Ósseas/etiologia , Humanos , Osteoporose/complicações , Guias de Prática Clínica como Assunto , Medição de Risco , Sociedades Médicas
12.
J Clin Densitom ; 18(3): 393-407, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26277853

RESUMO

The International Society for Clinical Densitometry (ISCD) has developed new official positions for the clinical use of computed tomography (CT) scans acquired without a calibration phantom, for example, CT scans obtained for other diagnosis such as colonography. This also addresses techniques suggested for opportunistic screening of osteoporosis. The ISCD task force for quantitative CT reviewed the evidence for clinical applications of these new techniques and presented a report with recommendations at the 2015 ISCD Position Development Conference. Here we discuss the agreed upon ISCD official positions with supporting medical evidence, rationale, controversy, and suggestions for further study. Advanced techniques summarized as statistical parameter mapping methods were also reviewed. Their future use is promising but the clinical application is premature. The clinical use of QCT of the hip is addressed in part I and of finite element analysis of the hip and spine in part II.


Assuntos
Osteoporose/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Absorciometria de Fóton , Acetábulo/diagnóstico por imagem , Adulto , Densidade Óssea , Calibragem , Consenso , Fêmur/diagnóstico por imagem , Fraturas Ósseas/diagnóstico , Fraturas Ósseas/etiologia , Humanos , Vértebras Lombares/diagnóstico por imagem , Programas de Rastreamento , Osteoporose/complicações , Guias de Prática Clínica como Assunto , Medição de Risco , Sociedades Médicas
13.
J Biomech Eng ; 137(1)2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25363247

RESUMO

Mechanical properties of human trabecular bone play an important role in age-related bone fragility and implant stability. Microfinite element (lFE) analysis allows computing the apparent elastic properties of trabecular bone for use in homogenized FE (hFE) analysis,but the results depend unfortunately on the type of applied boundary conditions(BCs). In this study, 167 human femoral trabecular cubic regions with a side length of 5.3mm were extracted from three proximal femora and analyzed using lFE analysis to compare systematically their stiffness with kinematic uniform BCs (KUBCs) and periodicity-compatible mixed uniform BCs (PMUBCs). The obtained elastic constants were then used in the volume fraction and fabric-based orthotropic Zysset­Curnier model to identify their respective model parameters. As expected, PMUBCs lead to more compliant apparent elastic properties than KUBCs, especially in shear. The differences in stiffness decreased with bone volume fraction and mean intercept length (MIL). Unlike KUBCs, PMUBCs were sensitive to heterogeneity of the biopsies. The Zysset­Curnier model fitted the apparent elastic constants successfully in both cases with adjusted coefficients of determination (r2adj) of 0.986 for KUBCs and 0.975 for PMUBCs. The proper use of these BCs for hFE analysis of whole bones will need to be investigated in future work.


Assuntos
Elasticidade , Fêmur , Análise de Elementos Finitos , Idoso , Fenômenos Biomecânicos , Feminino , Fêmur/anatomia & histologia , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Estresse Mecânico
14.
J Biomech Eng ; 136(4)2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24384581

RESUMO

Osteoporosis-related vertebral fractures represent a major health problem in elderly populations. Such fractures can often only be diagnosed after a substantial deformation history of the vertebral body. Therefore, it remains a challenge for clinicians to distinguish between stable and progressive potentially harmful fractures. Accordingly, novel criteria for selection of the appropriate conservative or surgical treatment are urgently needed. Computer tomography-based finite element analysis is an increasingly accepted method to predict the quasi-static vertebral strength and to follow up this small strain property longitudinally in time. A recent development in constitutive modeling allows us to simulate strain localization and densification in trabecular bone under large compressive strains without mesh dependence. The aim of this work was to validate this recently developed constitutive model of trabecular bone for the prediction of strain localization and densification in the human vertebral body subjected to large compressive deformation. A custom-made stepwise loading device mounted in a high resolution peripheral computer tomography system was used to describe the progressive collapse of 13 human vertebrae under axial compression. Continuum finite element analyses of the 13 compression tests were realized and the zones of high volumetric strain were compared with the experiments. A fair qualitative correspondence of the strain localization zone between the experiment and finite element analysis was achieved in 9 out of 13 tests and significant correlations of the volumetric strains were obtained throughout the range of applied axial compression. Interestingly, the stepwise propagating localization zones in trabecular bone converged to the buckling locations in the cortical shell. While the adopted continuum finite element approach still suffers from several limitations, these encouraging preliminary results towards the prediction of extended vertebral collapse may help in assessing fracture stability in future work.


Assuntos
Força Compressiva , Análise de Elementos Finitos , Fraturas Ósseas/fisiopatologia , Coluna Vertebral/fisiopatologia , Estresse Mecânico , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Feminino , Fraturas Ósseas/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Coluna Vertebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X
15.
J Biomech Eng ; 136(6): 061003, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24671515

RESUMO

Disc degeneration, usually associated with low back pain and changes of intervertebral stiffness, represents a major health issue. As the intervertebral disc (IVD) morphology influences its stiffness, the link between mechanical properties and degenerative grade is partially lost without an efficient normalization of the stiffness with respect to the morphology. Moreover, although the behavior of soft tissues is highly nonlinear, only linear normalization protocols have been defined so far for the disc stiffness. Thus, the aim of this work is to propose a nonlinear normalization based on finite elements (FE) simulations and evaluate its impact on the stiffness of human anatomical specimens of lumbar IVD. First, a parameter study involving simulations of biomechanical tests (compression, flexion/extension, bilateral torsion and bending) on 20 FE models of IVDs with various dimensions was carried out to evaluate the effect of the disc's geometry on its compliance and establish stiffness/morphology relations necessary to the nonlinear normalization. The computed stiffness was then normalized by height (H), cross-sectional area (CSA), polar moment of inertia (J) or moments of inertia (Ixx, Iyy) to quantify the effect of both linear and nonlinear normalizations. In the second part of the study, T1-weighted MRI images were acquired to determine H, CSA, J, Ixx and Iyy of 14 human lumbar IVDs. Based on the measured morphology and pre-established relation with stiffness, linear and nonlinear normalization routines were then applied to the compliance of the specimens for each quasi-static biomechanical test. The variability of the stiffness prior to and after normalization was assessed via coefficient of variation (CV). The FE study confirmed that larger and thinner IVDs were stiffer while the normalization strongly attenuated the effect of the disc geometry on its stiffness. Yet, notwithstanding the results of the FE study, the experimental stiffness showed consistently higher CV after normalization. Assuming that geometry and material properties affect the mechanical response, they can also compensate for one another. Therefore, the larger CV after normalization can be interpreted as a strong variability of the material properties, previously hidden by the geometry's own influence. In conclusion, a new normalization protocol for the intervertebral disc stiffness in compression, flexion, extension, bilateral torsion and bending was proposed, with the possible use of MRI and FE to acquire the discs' anatomy and determine the nonlinear relations between stiffness and morphology. Such protocol may be useful to relate the disc's mechanical properties to its degree of degeneration.


Assuntos
Análise de Elementos Finitos , Disco Intervertebral/anatomia & histologia , Vértebras Lombares/anatomia & histologia , Teste de Materiais , Fenômenos Mecânicos , Dinâmica não Linear , Fenômenos Biomecânicos , Humanos , Disco Intervertebral/fisiologia , Vértebras Lombares/fisiologia , Amplitude de Movimento Articular
16.
Eur J Orthop Surg Traumatol ; 24(6): 869-75, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23912935

RESUMO

PURPOSE: Distal radius fractures represent the most common fractures in adults. Volar locking plating to correct unstable fractures has become increasingly popular. Although reasonable primary reduction is possible in most cases, maintenance of reduction until the fracture is healed is often problematic in osteoporotic bone. To our knowledge, no biomechanical studies have compared the effect of enhancement with biomaterial on two different volar fixed-angle plates. METHODS: Human fresh-frozen cadaver pairs of radii were used to simulate an AO/OTA 23-A3 fracture. In a total of four groups (n = 7 for each group), two volar fixed-angle plates (Aptus 2.5 mm locking fracture plate, Medartis, Switzerland and VA-LCP two-column distal radius plate 2.4, volar, Synthes, Switzerland) with or without an additional injection of a biomaterial (Hydroset Injectable HA Bone Substitute, Stryker, Switzerland) into the dorsal comminution zone were used to fix the distal metaphyseal fragment. Each specimen was tested load-controlled under cyclic loading with a servo-hydraulic material testing machine. Displacement, stiffness, dissipated work and failure mode were recorded. RESULTS: Improved mechanical properties (decreased displacement, increased stiffness, decreased dissipated work) were found in both plates if the biomaterial was additionally injected. Improvement of mechanical parameters after biomaterial injection was more evident in the Synthes plate compared to the Aptus plate. Pushing out of the screws was noticed as a failure mode only in samples lacking supplementary biomaterial. CONCLUSIONS: Injection of a biomaterial into the dorsal comminution zone increases stability after volar locking plating of distal radius fractures in vitro.


Assuntos
Cimentos Ósseos/uso terapêutico , Placas Ósseas , Substitutos Ósseos/uso terapêutico , Fosfatos de Cálcio/uso terapêutico , Fraturas do Rádio/cirurgia , Idoso , Fenômenos Biomecânicos , Cadáver , Humanos
17.
Bone Rep ; 21: 101773, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778833

RESUMO

Despite the dominant role of bone mass in osteoporotic fractures, aging bone tissue properties must be thoroughly understood to improve osteoporosis management. In this context, collagen content and integrity are considered important factors, although limited research has been conducted on the tensile behavior of demineralized compact bone in relation to its porosity and elastic properties in the native mineralized state. Therefore, this study aims (i) at examining the age-dependency of mineralized bone and collagen micromechanical properties; (ii) to test whether, and if so to which extent, collagen properties contribute to mineralized bone mechanical properties. Two cylindrical cortical bone samples from fresh frozen human anatomic donor material were extracted from 80 proximal diaphyseal sections from a cohort of 24 female and 19 male donors (57 to 96 years at death). One sample per section was tested in uniaxial tension under hydrated conditions. First, the native sample was tested elastically (0.25 % strain), and after demineralization, up to failure. Morphology and composition of the second specimen was assessed using micro-computed tomography, Raman spectroscopy, and gravimetric methods. Simple and multiple linear regression were employed to relate morphological, compositional, and mechanical variables with age and sex. Macro-tensile properties revealed that only elastic modulus of native samples was age dependent whereas apparent elastic modulus was sex dependent (p < 0.01). Compositional and morphological analysis detected a weak but significant age and sex dependency of relative mineral weight (r = -0.24, p < 0.05) and collagen disorder ratio (I∼1670/I∼1640, r = 0.25, p < 0.05) and a strong sex dependency of bone volume fraction while generally showing consistent results in mineral content assessment. Young's modulus of demineralized bone was significantly related to tissue mineral density and Young's modulus of native bone. The results indicate that mechanical properties of the organic phase, that include collagen and non-collagenous proteins, are independent of donor age. The observed reduction in relative mineral weight and corresponding overall stiffer response of the collagen network may be caused by a reduced number of mineral-collagen connections and a lack of extrafibrillar and intrafibrillar mineralization that induces a loss of waviness and a collagen fiber pre-stretch.

18.
Bone Rep ; 21: 101752, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38590390

RESUMO

High-resolution peripheral quantitative computed tomography (HR-pQCT) based micro-finite element (µFE) analysis allows accurate prediction of stiffness and ultimate load of standardised (∼1 cm) distal radius and tibia sections. An alternative homogenized finite element method (hFE) was recently validated to compute the ultimate load of larger (∼2 cm) distal radius sections that include Colles' fracture sites. Since the mechanical integrity of the weight-bearing distal tibia is gaining clinical interest, it has been shown that the same properties can be used to predict the strength of both distal segments of the radius and the tibia. Despite the capacity of hFE to predict structural properties of distal segments of the radius and the tibia, the limitations of such homogenization scheme remain unclear. Therefore, the objective of this study is to build a complete mechanical data set of the compressive behavior of distal segments of the tibia and to compare quantitatively the structural properties with the hFE predictions. As a further aim, it is intended to verify whether hFE is also able to capture the post-yield strain localisation or fracture zones in such a bone section, despite the absence of strain softening in the constitutive model. Twenty-five fresh-frozen distal parts of tibias of human donors were used in this study. Sections were cut corresponding to an in-house triple-stack protocol HR-pQCT scan, lapped, and scanned using micro computed tomography (µCT). The sections were tested in compression until failure, unloaded and scanned again in µCT. Volumetric bone mineral density (vBMD) and bone mineral content (BMC) were correlated to compression test results. hFE analysis was performed in order to compare computational predictions (stiffness, yield load and plastic deformation field pattern) with the compressive experiment. Namely, strain localization was assessed based on digital volume correlation (DVC) results and qualitatively compared to hFE predictions by comparing mid-slices patterns. Bone mineral content (BMC) showed a good correlation with stiffness (R2 = 0.92) and yield (R2 = 0.88). Structural parameters also showed good agreement between the experiment and hFE for both stiffness (R2 = 0.96, slope = 1.05 with 95 % CI [0.97, 1.14]) and yield (R2 = 0.95, slope = 1.04 [0.94, 1.13]). The qualitative comparison between hFE and DVC strain localization patterns allowed the classification of the samples into 3 categories: bad (15 sections), semi (8), and good agreement (2). The good correlations between BMC or hFE and experiment for structural parameters were similar to those obtained previously for the distal part of the radius. The failure zones determined by hFE corresponded to registration only in 8 % of the cases. We attribute these discrepancies to local elastic/plastic buckling effects that are not captured by the continuum-based FE approach exempt from strain softening. A way to improve strain localization hFE prediction would be to use longer distal segments with intact cortical shells, as done for the radius. To conclude, the used hFE scheme captures the elastic and yield response of the tibia sections reliably but not the subsequent failure process.

19.
J Mech Behav Biomed Mater ; 150: 106294, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128472

RESUMO

Tissue fixation is a prevalent method for bone conservation. Bone biopsies are typically fixed in formalin, dehydrated in ethanol, and infiltrated with polymethyl methacrylate (PMMA) Since some experiments can only be performed on fixed bone samples, it is essential to understand how fixation affects the measured material properties. The aim of this study was to quantify the influence of tissue fixation on the mechanical properties of cortical ovine bone at the extracellular matrix (ECM) level with state-of-the-art micromechanical techniques. A small section from the middle of the diaphysis of two ovine tibias (3.5 and 5.5 years old) was cut in the middle and polished on each side, resulting in a pair of mirrored surfaces. For each pair, one specimen underwent a fixation protocol involving immersion in formalin, dehydration with ethanol, and infiltration with PMMA. The other specimen (mirrored) was air-dried. Six osteons were selected in both pairs, which could be identified in both specimens. The influence of fixation on the mechanical properties was first analyzed using micropillar compression tests and nanoindentation in dry condition. Additionally, changes in the degree of mineralization were evaluated with Raman spectroscopy in both fixed and native bone ECM. Finally, micro tensile experiments were conducted in the 3.5-year fixed ovine bone ECM and compared to reported properties of unfixed dry ovine bone ECM. Interestingly, we found that tissue fixation does not alter the mechanical properties of ovine cortical bone ECM compared to experiments in dry state. However, animal age increases the degree of mineralization (p = 0.0159) and compressive yield stress (p = 0.041). Tissue fixation appears therefore as a valid conservation technique for investigating the mechanical properties of dehydrated bone ECM.


Assuntos
Formaldeído , Polimetil Metacrilato , Ovinos , Animais , Fixação de Tecidos/métodos , Formaldeído/química , Etanol , Matriz Extracelular
20.
Biomech Model Mechanobiol ; 22(2): 453-466, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36477423

RESUMO

The microstructure of trabecular bone is known to adapt its morphology in response to mechanical loads for achieving a biomechanical homeostasis. Based on this form-function relationship, previous investigators either simulated the remodeling of bone to predict the resulting density and architecture for a specific loading or retraced physiological loading conditions from local density and architecture. The latter inverse approach includes quantifying bone morphology using computed tomography and calculating the relative importance of selected load cases by minimizing the fluctuation of a tissue loading level metric. Along this concept, the present study aims at identifying an optimal, personalized, multiaxial load case at the distal section of the human radius using in vivo HR-pQCT-based isotropic, homogenized finite element (hFE) analysis. The dataset consisted of HR-pQCT reconstructions of the 20 mm most distal section of 21 human fresh-frozen radii. We simulated six different unit canonical load cases (FX palmar-dorsal force, FY ulnar-radial force, FZ distal-proximal force, MX moment about palmar-dorsal, MY moment about ulnar-radial, MZ moment about distal-proximal) using a simplified and efficient hFE method based on a single isotropic bone phase. Once we used a homogeneous mean density (shape model) and once the original heterogeneous density distribution (shape + density model). Using an analytical formulation, we minimized the deviation of the resulting strain tensors ε(x) to a hydrostatic compressive reference strain ε0, once for the 6 degrees of freedom (DOF) optimal (OPT) load case and for all individual 1 DOF load cases (FX, FY, FZ, MX, MY, MZ). All seven load cases were then extended in the nonlinear regime using the scaled displacements of the linear load cases as loading boundary conditions (MAX). We then compared the load cases and models for their objective function (OF) values, the stored energies and their ultimate strength using a specific torsor norm. Both shape and shape + density linear-optimized OPT models were dominated by a positive force in the z-direction (FZ). Transversal force DOFs were close to zero and mean moment DOFs were different depending on the model type. The inclusion of density distribution increased the influence and changed direction of MX and MY, while MZ was small in both models. The OPT load case had 12-15% lower objective function (OF) values than the FZ load case, depending on the model. Stored energies at the optimum were consistently 142-178% higher for the OPT load case than for the FZ load case. Differences in the nonlinear response maximum torsor norm ‖t‖ were heterogeneous, but consistently higher for OPT_MAX than FZ_MAX. We presented the proof of concept of an optimization procedure to estimate patient-specific loading conditions for hFE methods. In contrast to similar models, we included canonical load cases in all six DOFs and used a strain metric that favors hydrostatic compression. Based on a biomechanical analysis of the distal joint surfaces at the radius, the estimated load directions are plausible. For our dataset, the resulting OPT load case is close to the standard axial compression boundary conditions, usually used in HR-pQCT-based FE analysis today. But even using the present simplified hFE model, the optimized linear six DOF load case achieves a more homogeneous tissue loading and can absorb more than twice the energy than the standard uniaxial load case. The ultimate strength calculated with a torsor norm was consistently higher for the 6-DOF nonlinear model (OPT_MAX) than for the 1-DOF nonlinear uniaxial model (FZ_MAX). Defining patient-specific boundary conditions may decrease angulation errors during CT measurements and improve repeatability as well as reproducibility of bone stiffness and strength estimated by HR-pQCT-based hFE analysis. These results encourage the extension of the present method to anisotropic hFE models and their application to repeatability data sets to test the hypothesis of reduced angulation errors during measurement.


Assuntos
Fenômenos Mecânicos , Rádio (Anatomia) , Humanos , Rádio (Anatomia)/diagnóstico por imagem , Rádio (Anatomia)/fisiologia , Análise de Elementos Finitos , Reprodutibilidade dos Testes , Extremidade Superior , Densidade Óssea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA