Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FEMS Yeast Res ; 12(8): 949-57, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22909099

RESUMO

In the ribosomal DNA (rDNA) array of Saccharomyces cerevisiae, DNA replication is arrested by the Fob1 protein in a site-specific manner that stimulates homologous recombination. The silent information regulator Sir2, which is loaded at the replication arrest sites by Fob1, suppresses this recombination event. A plasmid containing Fob1-binding sites, when propagated in a yeast strain lacking SIR2 is integrated into the yeast chromosome in a FOB1-dependent manner. We show that addition of nicotinamide (NAM) to the culture medium can stimulate such plasmid integration in the presence of SIR2. Pulsed-field gel electrophoresis analysis showed that plasmid integration occurred into chromosome XII. NAM-induced plasmid integration was dependent on FOB1 and on the homologous recombination gene RAD52. As NAM inhibits several sirtuins, we examined plasmid integration in yeast strains containing deletions of various sirtuin genes and observed that plasmid integration occurred only in the absence of SIR2, but not in the absence of other histone deacetylases. In the absence of PNC1 that metabolizes NAM, a reduced concentration of NAM was required to induce plasmid integration in comparison with that required in wild-type cells. This study suggests that NAD metabolism and intracellular NAM concentrations are important in Fob1-mediated rDNA recombination.


Assuntos
Cromossomos Fúngicos/genética , Proteínas de Ligação a DNA/genética , Niacinamida/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Replicação do DNA/efeitos dos fármacos , DNA Fúngico/efeitos dos fármacos , DNA Ribossômico/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel de Campo Pulsado , Inativação Gênica/efeitos dos fármacos , Plasmídeos/genética , Recombinação Genética/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo
2.
J Biol Chem ; 285(8): 5695-704, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20029091

RESUMO

A typical plasmid replicon of Escherichia coli, such as ori gamma of R6K, contains tandem iterons (iterated initiator protein binding sites), an AT-rich region that melts upon initiator-iteron interaction, two binding sites for the bacterial initiator protein DnaA, and a binding site for the DNA-bending protein IHF. R6K also contains two structurally atypical origins called alpha and beta that are located on either side of gamma and contain a single and a half-iteron, respectively. Individually, these sites do not bind to initiator protein pi but access it by DNA looping-mediated interaction with the seven pi-bound gamma iterons. The pi protein exists in 2 interconvertible forms: inert dimers and active monomers. Initiator dimers generally function as negative regulators of replication by promoting iteron pairing ("handcuffing") between pairs of replicons that turn off both origins. Contrary to this existing paradigm, here we show that both the dimeric and the monomeric pi are necessary for ori alpha-driven plasmid maintenance. Furthermore, efficient looping interaction between alpha and gamma or between 2 gamma iterons in vitro also required both forms of pi. Why does alpha-gamma iteron pairing promote alpha activation rather than repression? We show that a weak, transitory alpha-gamma interaction at the iteron pairs was essential for alpha-driven plasmid maintenance. Swapping the alpha iteron with one of gamma without changing the original sequence context that caused enhanced looping in vitro caused a significant inhibition of alpha-mediated plasmid maintenance. Therefore, the affinity of alpha iteron for pi-bound gamma and not the sequence context determined whether the origin was activated or repressed.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Escherichia coli/metabolismo , Plasmídeos/biossíntese , Origem de Replicação/fisiologia , Transativadores/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores Hospedeiros de Integração/genética , Fatores Hospedeiros de Integração/metabolismo , Plasmídeos/genética , Multimerização Proteica/fisiologia , Transativadores/genética
3.
J Biol Chem ; 285(17): 12612-9, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20179323

RESUMO

The replication terminator protein Fob1 of Saccharomyces cerevisiae is multifunctional, and it not only promotes polar replication fork arrest at the tandem Ter sites located in the intergenic spacer region of rDNA but also loads the NAD-dependent histone deacetylase Sir2 at Ter sites via a protein complex called RENT (regulator of nucleolar silencing and telophase exit). Sir2 is a component of the RENT complex, and its loading not only silences intrachromatid recombination in rDNA but also RNA polymerase II-catalyzed transcription. Here, we present three lines of evidence showing that the two aforementioned activities of Fob1 are independent of each other as well as functionally separable. First, a Fob1 ortholog of Saccharomyces bayanus expressed in a fob1Delta strain of S. cerevisiae restored polar fork arrest at Ter but not rDNA silencing. Second, a mutant form (I407T) of S. cerevisiae Fob1 retained normal fork arresting activity but was partially defective in rDNA silencing. We further show that the silencing defect of S. bayanus Fob1 and the Iota407Tau mutant of S. cerevisiae Fob1 were caused by the failure of the proteins to interact with two members of the S. cerevisiae RENT complex, namely S. cerevisiae Sir2 and S. cerevisiae Net1. Third, deletions of the intra-S phase checkpoint proteins Tof1 and Csm3 abolished fork arrest by Fob1 at Ter without causing loss of silencing. Taken together, the data support the conclusion that unlike some other functions of Fob1, rDNA silencing at Ter is independent of fork arrest.


Assuntos
Replicação do DNA/fisiologia , DNA Fúngico/metabolismo , DNA Ribossômico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inativação Gênica/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Fúngico/genética , DNA Intergênico/genética , DNA Intergênico/metabolismo , DNA Ribossômico/genética , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo , Transcrição Gênica/fisiologia
4.
Proc Natl Acad Sci U S A ; 105(35): 12831-6, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18708526

RESUMO

The replication terminator protein Tus of Escherichia coli promotes polar fork arrest at sequence-specific replication termini (Ter) by antagonizing DNA unwinding by the replicative helicase DnaB. Here, we report that Tus is also a polar antitranslocase. We have used this activity as a tool to uncouple helicase arrest at a Tus-Ter complex from DNA unwinding and have shown that helicase arrest occurred without the generation of a DNA fork or a bubble of unpaired bases at the Tus-Ter complex. A mutant form of Tus, which reduces DnaB-Tus interaction but not the binding affinity of Tus for Ter DNA, was also defective in arresting a sliding DnaB. A model of polar fork arrest that proposes melting of the Tus-Ter complex and flipping of a conserved C residue of Ter at the blocking but not the nonblocking face has been reported. The model suggests that enhanced stability of Tus-Ter interaction caused by DNA melting and capture of a flipped base by Tus generates polarity strictly by enhanced protein-DNA interaction. In contrast, the observations presented here show that polarity of helicase and fork arrest in vitro is generated by a mechanism that not only involves interaction between the terminator protein and the arrested enzyme but also of Tus with Ter DNA, without any melting and base flipping in the termination complex.


Assuntos
Replicação do DNA , DnaB Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Substituição de Aminoácidos , Sequência de Bases , Citosina , DNA/genética , DNA/metabolismo , DNA Bacteriano/genética , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Mutação/genética , Desnaturação de Ácido Nucleico , Transporte Proteico , Especificidade por Substrato
5.
Mol Cell ; 20(6): 833-43, 2005 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16364910

RESUMO

Although DNA looping between the initiator binding sites (iterons) of the replication origin (ori) of a plasmid and the iterons located in a cis-acting control sequence called inc has been postulated to promote negative control of plasmid DNA replication, not only was definitive evidence for such looping lacking, but also the detailed molecular mechanism of this control had not been elucidated. Here, we present direct evidence showing that both the monomeric and the dimeric forms of the RepE initiator protein of F factor together promote pairing of incC-oriF sites by DNA looping. By using a reconstituted replication system consisting of 26 purified proteins, we show further that the DNA loop formation negatively regulates plasmid replication by inhibiting the formation of an open complex at the replication origin, thus elucidating a key step of replication control.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Plasmídeos/metabolismo , Conformação Proteica , Origem de Replicação , Proteínas Repressoras , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dimerização , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Substâncias Macromoleculares , Plasmídeos/genética , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
6.
J Biol Chem ; 279(49): 50886-94, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15485812

RESUMO

The plasmid R6K is an interesting model system for investigating initiation of DNA replication, not only near the primary binding sites of the initiator protein pi but also at a distance, caused by pi -mediated DNA looping. An important milestone in the mechanistic analysis of this replicon was the development of a reconstituted replication system consisting of 22 different highly purified proteins (Abhyankar, M. A., Zzaman, S., and Bastia, D. (2003) J. Biol. Chem. 278, 45476-45484). Although the in vitro reconstituted system promotes ori gamma-specific initiation of replication by a mutant form of the initiator called pi*, the wild type (WT) pi is functionally inert in this system. Here we show that the chaperone DnaK along with its co-chaperone DnaJ and the nucleotide exchange factor GrpE were needed to activate WT pi and caused it to initiate replication in vitro at the correct origin. We show further that the reaction was relatively chaperone-specific and that other chaperones, such as ClpB and ClpX, were incapable of activating WT pi. The molecular mechanism of activation appeared to be a chaperone-catalyzed facilitation of dimeric inert WT pi into iteron-bound monomers. Protein-protein interaction analysis by enzyme-linked immunosorbent assay revealed that, in the absence of ATP, DnaJ directly interacted with pi but its binary interactions with DnaK and GrpE and with ClpB and ClpX were at background levels, suggesting that pi is recruited by protein-protein interaction with DnaJ and then fed into the DnaK chaperone machine to promote initiator activation.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/fisiologia , Proteínas de Choque Térmico HSP70/fisiologia , Proteínas de Choque Térmico/fisiologia , Plasmídeos/metabolismo , Transativadores/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Sítios de Ligação , DNA/química , Primers do DNA/química , Dimerização , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Endopeptidase Clp , Ensaio de Imunoadsorção Enzimática , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico/química , Modelos Biológicos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Mutação , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA