Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 21(1): 36, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797789

RESUMO

BACKGROUND: Cellular entry of SARS-CoV-2 has been shown to rely on angiotensin-converting enzyme 2 (ACE2) receptors, whose expression in the testis is among the highest in the body. Additionally, the risk of mortality seems higher among male COVID-19 patients, and though much has been published since the first cases of COVID-19, there remain unanswered questions regarding SARS-CoV-2 impact on testes and potential consequences for reproductive health. We investigated testicular alterations in non-vaccinated deceased COVID-19-patients, the precise location of the virus, its replicative activity, and the immune, vascular, and molecular fluctuations involved in the pathogenesis. RESULTS: We found that SARS-CoV-2 testicular tropism is higher than previously thought and that reliable viral detection in the testis requires sensitive nanosensors or RT-qPCR using a specific methodology. Through an in vitro experiment exposing VERO cells to testicular macerates, we observed viral content in all samples, and the subgenomic RNA's presence reinforced the replicative activity of SARS-CoV-2 in testes of the severe COVID-19 patients. The cellular structures and viral particles, observed by transmission electron microscopy, indicated that macrophages and spermatogonial cells are the main SARS-CoV-2 lodging sites, where new virions form inside the endoplasmic reticulum Golgi intermediate complex. Moreover, we showed infiltrative infected monocytes migrating into the testicular parenchyma. SARS-CoV-2 maintains its replicative and infective abilities long after the patient's infection. Further, we demonstrated high levels of angiotensin II and activated immune cells in the testes of deceased patients. The infected testes show thickening of the tunica propria, germ cell apoptosis, Sertoli cell barrier loss, evident hemorrhage, angiogenesis, Leydig cell inhibition, inflammation, and fibrosis. CONCLUSIONS: Our findings indicate that high angiotensin II levels and activation of mast cells and macrophages may be critical for testicular pathogenesis. Importantly, our findings suggest that patients who become critically ill may exhibit severe alterations and harbor the active virus in the testes.


Assuntos
COVID-19 , Testículo , Tropismo Viral , Animais , Humanos , Masculino , Angiotensina II/metabolismo , Chlorocebus aethiops , COVID-19/patologia , SARS-CoV-2 , Testículo/imunologia , Testículo/virologia , Células Vero
2.
Emerg Infect Dis ; 29(6): 1270-1273, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37069695

RESUMO

Phylogenetic analysis of 34 monkeypox virus genome sequences isolated from patients in Minas Gerais, Brazil, revealed initial importation events in early June 2022, then community transmission within the state. All generated genomes belonged to the B.1 lineage responsible for a global mpox outbreak. These findings can inform public health measures.


Assuntos
Monkeypox virus , Mpox , Humanos , Monkeypox virus/genética , Filogenia , Brasil/epidemiologia , Surtos de Doenças , Genômica , Mpox/epidemiologia
3.
Virol J ; 20(1): 145, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37434252

RESUMO

BACKGROUND: Cell responses to different stress inducers are efficient mechanisms that prevent and fight the accumulation of harmful macromolecules in the cells and also reinforce the defenses of the host against pathogens. Vaccinia virus (VACV) is an enveloped, DNA virus, belonging to the Poxviridae family. Members of this family have evolved numerous strategies to manipulate host responses to stress controlling cell survival and enhancing their replicative success. In this study, we investigated the activation of the response signaling to malformed proteins (UPR) by the VACV virulent strain-Western Reserve (WR)-or the non-virulent strain-Modified Vaccinia Ankara (MVA). METHODS: Through RT-PCR RFLP and qPCR assays, we detected negative regulation of XBP1 mRNA processing in VACV-infected cells. On the other hand, through assays of reporter genes for the ATF6 component, we observed its translocation to the nucleus of infected cells and a robust increase in its transcriptional activity, which seems to be important for virus replication. WR strain single-cycle viral multiplication curves in ATF6α-knockout MEFs showed reduced viral yield. RESULTS: We observed that VACV WR and MVA strains modulate the UPR pathway, triggering the expression of endoplasmic reticulum chaperones through ATF6α signaling while preventing IRE1α-XBP1 activation. CONCLUSIONS: The ATF6α sensor is robustly activated during infection while the IRE1α-XBP1 branch is down-regulated.


Assuntos
Fatores de Transcrição , Vaccinia virus , Fatores de Transcrição/genética , Vaccinia virus/genética , Endorribonucleases , Proteínas Serina-Treonina Quinases , Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas
4.
Trop Anim Health Prod ; 55(5): 289, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37580646

RESUMO

The pirarucu (Arapaima gigas) is a fast-growing Amazonian species of high commercial value. The present study aimed to determine the dietary crude protein (CP) level to promote maximum zootechnical performance for pirarucu fingerlings and as their resistance to Aeromonas hydrophila, as well as evaluate their hematological parameters. Pirarucu fingerlings (2.4 ± 0.08 g, 6.8 ± 0.52 cm) were distributed in 18 tanks (140 L, 40 fish per tank, n = 3) and fed six experimental diets consisting of increasing levels of CP: 300, 400, 450, 500, 550 and 650 g kg-1 in a completely randomized design. Data were submitted to one-way ANOVA (p < 0.05) and the ideal CP level for weight gain was determined using polynomial regression analysis. The dietary CP levels were evaluated using a quadratic polynomial regression and the level of 595 g kg-1 was determined for the best weight gain. The hematocrit of fish fed 300 g kg-1 was higher than in the other groups. No mortalities were observed after the 15-day bacterial challenge; however, number of pirarucu with bacterial damage on the pirarucu caudal fin was higher in the group that was fed the diet with 300 g kg-1. A dietary protein level of 618 g kg-1 is therefore recommended for providing maximum weight gain and immunological resistance in pirarucu fingerlings weighing 2.4-112.5 g.


Assuntos
Aeromonas hydrophila , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Dieta/veterinária , Proteínas Alimentares , Suplementos Nutricionais/análise , Peixes/fisiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Hematócrito/veterinária
5.
Virol J ; 18(1): 124, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34107993

RESUMO

BACKGROUND: The vaccinia virus (VACV) isolates, Guarani P1 virus (GP1V) and Passatempo virus (PSTV), were isolated during zoonotic outbreaks in Brazil. Each one of them belongs to two different VACV clades, defined by biological aspects that include virulence in mice and phylogenetic analysis. Considering that information about how vaccinia viruses from different groups elicit immune responses in animals is scarce, we investigated such responses in mice infected either by GP1V (group 2) or PSTV (group 1), using VACV Western Reserve strain (VACV-WR) as control. METHODS: The severity of the infections was evaluated in BALB/c mice considering diverse clinical signs and defined scores, and the immune responses triggered by GP1V and PSTV infections were analysed by immune cell phenotyping and intra-cytoplasmic cytokines detection. RESULTS: We detected a reduction in total lymphocytes (CD3 +), macrophages (CD14 +), and NK cells (CD3-CD49 +) in animals infected with VACV-WR or GP1V. The VACV-WR and GP1V viruses, belonging to the most virulent group in a murine model, were able to down-modulate the cell immune responses upon mice infection. In contrast, PSTV, a virus considered less virulent in a murine model, showed little ability to down-modulate the mice immune responses. Mice infected with VACV-WR and GP1V viruses presented significant weight loss and developed lesions in their spleens, as well as damage to liver and lungs whereas mice infected with PSTV developed only moderate clinical signs. CONCLUSIONS: Our results suggest that VACV immunomodulation in vivo is clade-related and is proportional to the strain's virulence upon infection. Our data corroborate the classification of the different Brazilian VACV isolates into clades 1 and 2, taking into account not only phylogenetic criteria, but also clinical and immunological data.


Assuntos
Imunomodulação , Vaccinia virus , Vacínia , Animais , Modelos Animais de Doenças , Imunidade Celular , Camundongos , Camundongos Endogâmicos BALB C , Filogenia , Vacínia/imunologia , Vacínia/virologia , Vaccinia virus/genética , Vaccinia virus/patogenicidade , Virulência
6.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30567985

RESUMO

Vaccinia virus (VACV) is a notorious virus for a number of scientific reasons; however, most of its notoriety comes from the fact that it was used as a vaccine against smallpox, being ultimately responsible for the eradication of that disease. Nonetheless, many different vaccinia virus strains have been obtained over the years; some are suitable to be used as vaccines, whereas others are virulent and unsuitable for this purpose. Interestingly, different vaccinia virus strains elicit different immune responses in vivo, and this is a direct result of the genomic differences among strains. In order to evaluate the net result of virus-encoded immune evasion strategies of vaccinia viruses, we compared antiviral immune responses in mice intranasally infected by the highly attenuated and nonreplicative MVA strain, the attenuated and replicative Lister strain, or the virulent WR strain. Overall, cell responses elicited upon WR infections are downmodulated compared to those elicited by MVA and Lister infections, especially in determined cell compartments such as macrophages/monocytes and CD4+ T cells. CD4+ T cells are not only diminished in WR-infected mice but also less activated, as evaluated by the expression of costimulatory molecules such as CD25, CD212, and CD28 and by the production of cytokines, including tumor necrosis factor alpha (TNF-α), gamma interferon (IFN-γ), interleukin-4 (IL-4), and IL-10. On the other hand, MVA infections are able to induce strong T-cell responses in mice, whereas Lister infections consistently induced responses that were intermediary between those induced by WR and MVA. Together, our results support a model in which the virulence of a VACV strain is proportional to its potential to downmodulate the host's immune responses.IMPORTANCE Vaccinia virus was used as vaccine against smallpox and was instrumental in the successful eradication of that disease. Although smallpox vaccination is no longer in place in the overall population, the use of vaccinia virus in the development of viral vector-based vaccines has become popular. Nonetheless, different vaccinia virus strains are known and induce different immune responses. To look into this, we compared immune responses triggered by mouse infections with the nonreplicative MVA strain, the attenuated Lister strain, or the virulent WR strain. We observed that the WR strain was capable of downmodulating mouse cell responses, whereas the highly attenuated MVA strain induced high levels of cell-mediated immunity. Infections by the intermediately attenuated Lister strain induced cell responses that were intermediary between those induced by WR and MVA. We propose that the virulence of a vaccinia virus strain is directly proportional to its ability to downmodulate specific compartments of antiviral cell responses.


Assuntos
Imunidade Celular/imunologia , Vaccinia virus/imunologia , Vacínia/imunologia , Virulência/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Galinhas/imunologia , Galinhas/virologia , Chlorocebus aethiops/imunologia , Chlorocebus aethiops/virologia , Citocinas/imunologia , Vetores Genéticos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Varíola/imunologia , Vacinação/métodos , Vacínia/virologia , Vacinas Virais/imunologia
7.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794030

RESUMO

Viruses display a wide range of genomic profiles and, consequently, a variety of gene expression strategies. Specific sequences associated with transcriptional processes have been described in viruses, and putative promoter motifs have been elucidated for some nucleocytoplasmic large DNA viruses (NCLDV). Among NCLDV, the Marseilleviridae is a well-recognized family because of its genomic mosaicism. The marseilleviruses have an ability to incorporate foreign genes, especially from sympatric organisms inhabiting Acanthamoeba, its main known host. Here, we identified for the first time an eight-nucleotide A/T-rich promoter sequence (AAATATTT) associated with 55% of marseillevirus genes that is conserved in all marseilleviruses lineages, a higher level of conservation than that of any giant virus described to date. We instigated our prediction about the promoter motif by biological assays and by evaluating how single mutations in this octamer can impact gene expression. The investigation of sequences that regulate the expression of genes relative to lateral transfer revealed that the promoter motifs do not appear to be incorporated by marseilleviruses from donor organisms. Indeed, analyses of the intergenic regions that regulate lateral gene transfer-related genes have revealed an independent origin of the marseillevirus intergenic regions that does not match gene-donor organisms. About 50% of AAATATTT motifs spread throughout intergenic regions of the marseilleviruses are present as multiple copies. We believe that such multiple motifs are associated with increased expression of a given gene or are related to incorporation of foreign genes into the mosaic genome of marseilleviruses.IMPORTANCE The marseilleviruses draw attention because of the peculiar features of their genomes; however, little is known about their gene expression patterns or the factors that regulate those expression patterns. The limited published research on the expression patterns of the marseilleviruses and their unique genomes has led us to study the promoter motif sequences in the intergenic regions of the marseilleviruses. This work is the first to analyze promoter sequences in the genomes of the marseilleviruses. We also suggest a strong capacity to acquire foreign genes and to express those genes mediated by multiple copies of the promoter motifs available in intergenic regions. These findings contribute to an understanding of genomic expansion and plasticity observed in these giant viruses.


Assuntos
Acanthamoeba/virologia , Vírus de DNA/genética , DNA Intergênico , Genoma Viral , Motivos de Nucleotídeos , Regiões Promotoras Genéticas/genética , Sequência de Bases , Biologia Computacional , Vírus de DNA/patogenicidade , DNA Viral , Genômica , Filogenia
9.
J Virol ; 90(11): 5246-55, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26984730

RESUMO

UNLABELLED: Triggering the amoebal phagocytosis process is a sine qua non condition for most giant viruses to initiate their replication cycle and consequently to promote their progeny formation. It is well known that the amoebal phagocytosis process requires the recognition of particles of >500 nm, and most amoebal giant viruses meet this requirement, such as mimivirus, pandoravirus, pithovirus, and mollivirus. However, in the context of the discovery of amoebal giant viruses in the last decade, Marseillevirus marseillevirus (MsV) has drawn our attention, because despite its ability to successfully replicate in Acanthamoeba, remarkably it does not fulfill the >500-nm condition, since it presents an ∼250-nm icosahedrally shaped capsid. We deeply investigated the MsV cycle by using a set of methods, including virological, molecular, and microscopic (immunofluorescence, scanning electron microscopy, and transmission electron microscopy) assays. Our results revealed that MsV is able to form giant vesicles containing dozens to thousands of viral particles wrapped by membranes derived from amoebal endoplasmic reticulum. Remarkably, our results strongly suggested that these giant vesicles are able to stimulate amoebal phagocytosis and to trigger the MsV replication cycle by an acidification-independent process. Also, we observed that MsV entry may occur by the phagocytosis of grouped particles (without surrounding membranes) and by an endosome-stimulated pathway triggered by single particles. Taken together, not only do our data deeply describe the main features of MsV replication cycle, but this is the first time, to our knowledge, that the formation of giant infective vesicles related to a DNA virus has been described. IMPORTANCE: Triggering the amoebal phagocytosis process is a sine qua non condition required by most giant viruses to initiate their replication cycle. This process requires the recognition of particles of >500 nm, and many giant viruses meet this requirement. However, MsV is unusual, as despite having particles of ∼250 nm it is able to replicate in Acanthamoeba Our results revealed that MsV is able to form giant vesicles, containing dozens to thousands of viral particles, wrapped in membranes derived from amoebal endoplasmic reticulum. Remarkably, our results strongly suggest that these giant vesicles are able to stimulate phagocytosis using an acidification-independent process. Our work not only describes the main features of the MsV replication cycle but also describes, for the first time to our knowledge, the formation of huge infective vesicles in a large DNA viruses.


Assuntos
Acanthamoeba/virologia , Vesículas Citoplasmáticas/virologia , Vírus Gigantes/fisiologia , Internalização do Vírus , Animais , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Vesículas Citoplasmáticas/metabolismo , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Genoma Viral , Vírus Gigantes/ultraestrutura , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Fagocitose , Filogenia , Vírion/genética , Vírion/fisiologia , Vírion/ultraestrutura , Replicação Viral
10.
J Immunol ; 195(5): 2263-72, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26195812

RESUMO

CD8(+) T cells that recognize virus-derived peptides presented on MHC class I are vital antiviral effectors. Such peptides presented by any given virus vary greatly in immunogenicity, allowing them to be ranked in an immunodominance hierarchy. However, the full range of parameters that determine immunodominance and the underlying mechanisms remain unknown. In this study, we show across a range of vaccinia virus strains, including the current clonal smallpox vaccine, that the ability of a strain to spread systemically correlated with reduced immunodominance. Reduction in immunodominance was observed both in the lymphoid system and at the primary site of infection. Mechanistically, reduced immunodominance was associated with more robust priming and especially priming in the spleen. Finally, we show this is not just a property of vaccine and laboratory strains of virus, because an association between virulence and immunodominance was also observed in isolates from an outbreak of zoonotic vaccinia virus that occurred in Brazil.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vacina Antivariólica/imunologia , Vaccinia virus/imunologia , Vacínia/imunologia , Sequência de Aminoácidos , Animais , Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Linhagem Celular , Epitopos de Linfócito T/imunologia , Feminino , Interações Hospedeiro-Patógeno/imunologia , Epitopos Imunodominantes/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL , Especificidade da Espécie , Baço/imunologia , Baço/metabolismo , Baço/virologia , Vacínia/virologia , Vaccinia virus/classificação , Vaccinia virus/fisiologia , Zoonoses/virologia
11.
J Nanobiotechnology ; 15(1): 26, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376812

RESUMO

BACKGROUND: Dengue is the most prevalent arthropod-borne viral disease in the world. In this article we present results on the development, characterization and immunogenic evaluation of an alternative vaccine candidate against Dengue. METHODS: The MWNT-DENV3E nanoconjugate was developed by covalent functionalization of carboxylated multi-walled carbon nanotubes (MWNT) with recombinant dengue envelope (DENV3E) proteins. The recombinant antigens were bound to the MWNT using a diimide-activated amidation process and the immunogen was characterized by TEM, AFM and Raman Spectroscopy. Furthermore, the immunogenicity of this vaccine candidate was evaluated in a murine model. RESULTS: Immunization with MWNT-DENV3E induced comparable IgG responses in relation to the immunization with non-conjugated proteins; however, the inoculation of the nanoconjugate into mice generated higher titers of neutralizing antibodies. Cell-mediated responses were also evaluated, and higher dengue-specific splenocyte proliferation was observed in cell cultures derived from mice immunized with MWNT-DENV3E when compared to animals immunized with the non-conjugated DENV3E. CONCLUSIONS: Despite the recent licensure of the CYD-TDV dengue vaccine in some countries, results from the vaccine's phase III trial have cast doubts about its overall efficacy and global applicability. While questions about the effectiveness of the CYD-TDV vaccine still lingers, it is wise to keep at hand an array of vaccine candidates, including alternative non-classical approaches like the one presented here.


Assuntos
Formação de Anticorpos , Vacinas contra Dengue/imunologia , Dengue/prevenção & controle , Nanotubos de Carbono/química , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Proliferação de Células , Citocinas/imunologia , Dengue/imunologia , Vacinas contra Dengue/uso terapêutico , Vírus da Dengue/imunologia , Feminino , Imunidade Celular , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Nanoconjugados/química , Nanomedicina , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Análise Espectral Raman , Baço/citologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico
12.
Arch Virol ; 161(11): 2991-3002, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27465567

RESUMO

The orthopoxvirus vaccinia virus (VACV) interacts with both actin and microtubule cytoskeletons in order to generate and spread progeny virions. Here, we present evidence demonstrating the involvement of PAK1 (p21-activated kinase 1) in the dissemination of VACV. Although PAK1 activation has previously been associated with optimal VACV entry via macropinocytosis, its absence does not affect the production of intracellular mature virions (IMVs) and extracellular enveloped virions (EEVs). Our data demonstrate that low-multiplicity infection of PAK1(-/-) MEFs leads to a reduction in plaque size followed by decreased production of both IMVs and EEVs, strongly suggesting that virus spread was impaired in the absence of PAK1. Confocal and scanning electron microscopy showed a substantial reduction in the amount of VACV-induced actin tails in PAK1(-/-) MEFs, but no significant alteration in the total amount of cell-associated enveloped virions (CEVs). Furthermore, the decreased VACV dissemination in PAK1(-/-) cells was correlated with the absence of phosphorylated ARPC1 (Thr21), a downstream target of PAK1 and a key regulatory subunit of the ARP2/3 complex, which is necessary for the formation of actin tails and viral spread. We conclude that PAK1, besides its role in virus entry, also plays a relevant role in VACV dissemination.


Assuntos
Endocitose , Interações Hospedeiro-Patógeno , Vaccinia virus/fisiologia , Internalização do Vírus , Quinases Ativadas por p21/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Varredura , Quinases Ativadas por p21/genética
13.
Emerg Infect Dis ; 21(4): 695-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25811411

RESUMO

In 2010, a vaccinia virus isolate caused an atypically severe outbreak that affected humans and cattle in Brazil. Of 26 rural workers affected, 12 were hospitalized. Our data raise questions about the risk factors related to the increasing number and severity of vaccinia virus infections.


Assuntos
Doenças dos Bovinos/epidemiologia , Vaccinia virus , Vacínia/epidemiologia , Zoonoses/epidemiologia , Adolescente , Adulto , Animais , Brasil/epidemiologia , Bovinos , Doenças dos Bovinos/virologia , Surtos de Doenças , Genes Virais , Humanos , Pessoa de Meia-Idade , Filogenia , Vacínia/virologia , Vaccinia virus/classificação , Vaccinia virus/genética , Vaccinia virus/isolamento & purificação , Adulto Jovem , Zoonoses/virologia
14.
BMC Microbiol ; 14: 331, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25539906

RESUMO

BACKGROUND: Human T-lymphotropic virus 1 (HTLV-1) has been associated with leukemia/lymphoma (ATL) and myelopathy/tropical spastic paraparesis (HAM/TSP), in addition to other inflammatory diseases as well as infection complications. Therapeutic approaches for HTLV-1-related pathologies are limited. The labdane diterpene myriadenolide (AMY) is a natural product that exhibit biological activities, such as anti-inflammatory and antiviral activity as reported for HIV and herpesvirus. RESULTS: We demonstrated that this natural product was able to inhibit the expression of gag-pol mRNA and substantially reduced the expression of the structural proteins p19 and gp46. Comparison of treated and untreated cells shows that AMY alters both the morphology and the release of viral particles. The Atomic Force Microscopy assay showed that the AMY treatment reduced the number of particles on the cell surface by 47%. CONCLUSION: We demonstrated that the labdane diterpene myriadenolide reduced the expression of the structural proteins and the budding of viral particles, besides induces altered morphogenesis of HTLV-1, conferring on AMY a new antiviral activity that may be useful for the development of new compounds with specific anti-HTLV-1 activity.


Assuntos
Antivirais/farmacologia , Diterpenos/farmacologia , Vírus Linfotrópico T Tipo 1 Humano/efeitos dos fármacos , Morfogênese/efeitos dos fármacos , RNA Mensageiro/genética , Anti-Inflamatórios/farmacologia , Fatores Biológicos/farmacologia , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Humanos , Células Jurkat
15.
Animals (Basel) ; 14(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38672312

RESUMO

The aim of this study was to produce feed based on locally sourced ingredients for tambaqui farming in Amazon. Diets were formulated with increasing levels (0, 25, 50, 75 and 100%) of defatted black soldier fly larvae meal (BSFL) as a replacement for fish meal (FM), and cassava by-products in the same proportion (tuber residues, peel and leaves). A conventional diet (CO) was used as the control. Juvenile tambaqui (24.61 ± 1.14 g) were housed in 24 tanks in a recirculation aquaculture system. Neither diet rejection nor mortality were observed. Fish fed cassava by-products showed similar feed conversion rates (FCR 1.76); however, these values were worse than those observed in fish fed the CO (FCR 1.33). No differences were observed in the whole-body composition of the fish. The fillets of fish fed cassava by-products had a yellow color due the carotenoids present in the leaves. Dietary BSFL and cassava by-products can contribute to the sustainability of Amazonian aquaculture. Further studies with a lower proportion of cassava leaves in the diet formulation are recommended so as to ensure enhanced diet digestibility and less impact on the color of the fillets.

16.
Cell Rep ; 43(3): 113882, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38457341

RESUMO

Numerous viruses alter host microtubule (MT) networks during infection, but how and why they induce these changes is unclear in many cases. We show that the vaccinia virus (VV)-encoded A51R protein is a MT-associated protein (MAP) that directly binds MTs and stabilizes them by both promoting their growth and preventing their depolymerization. Furthermore, we demonstrate that A51R-MT interactions are conserved across A51R proteins from multiple poxvirus genera, and highly conserved, positively charged residues in A51R proteins mediate these interactions. Strikingly, we find that viruses encoding MT interaction-deficient A51R proteins fail to suppress a reactive oxygen species (ROS)-dependent antiviral response in macrophages that leads to a block in virion morphogenesis. Moreover, A51R-MT interactions are required for VV virulence in mice. Collectively, our data show that poxviral MAP-MT interactions overcome a cell-intrinsic antiviral ROS response in macrophages that would otherwise block virus morphogenesis and replication in animals.


Assuntos
Poxviridae , Replicação Viral , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Poxviridae/genética , Vaccinia virus/fisiologia , Proteínas Virais/metabolismo , Microtúbulos/metabolismo , Antivirais/metabolismo
17.
PLoS Negl Trop Dis ; 18(4): e0012100, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635656

RESUMO

Zika virus (ZIKV), an arbovirus from the Flaviviridae family, is the causative agent of Zika fever, a mild and frequent oligosymptomatic disease in humans. Nonetheless, on rare occasions, ZIKV infection can be associated with Guillain-Barré Syndrome (GBS), and severe congenital complications, such as microcephaly. The oligosymptomatic disease, however, presents symptoms that are quite similar to those observed in infections caused by other frequent co-circulating arboviruses, including dengue virus (DENV). Moreover, the antigenic similarity between ZIKV and DENV, and even with other members of the Flaviviridae family, complicates serological testing due to the high cross-reactivity of antibodies. Here, we designed, produced in a prokaryotic expression system, and purified three multiepitope proteins (ZIKV-1, ZIKV-2, and ZIKV-3) for differential diagnosis of Zika. The proteins were evaluated as antigens in ELISA tests for the detection of anti-ZIKV IgG using ZIKV- and DENV-positive human sera. The recombinant proteins were able to bind and detect anti-ZIKV antibodies without cross-reactivity with DENV-positive sera and showed no reactivity with Chikungunya virus (CHIKV)- positive sera. ZIKV-1, ZIKV-2, and ZIKV-3 proteins presented 81.6%, 95%, and 66% sensitivity and 97%, 96%, and 84% specificity, respectively. Our results demonstrate the potential of the designed and expressed antigens in the development of specific diagnostic tests for the detection of IgG antibodies against ZIKV, especially in regions with the circulation of multiple arboviruses.


Assuntos
Arbovírus , Febre de Chikungunya , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Humanos , Infecção por Zika virus/diagnóstico , Zika virus/genética , Epitopos , Anticorpos Antivirais , Imunoglobulina G
18.
Nat Microbiol ; 9(4): 988-1006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538832

RESUMO

The human facilitates chromatin transcription (FACT) complex is a chromatin remodeller composed of human suppressor of Ty 16 homologue (hSpt16) and structure-specific recognition protein-1 subunits that regulates cellular gene expression. Whether FACT regulates host responses to infection remained unclear. We identify a FACT-mediated, interferon-independent, antiviral pathway that restricts poxvirus replication. Cell culture and bioinformatics approaches suggest that early viral gene expression triggers nuclear accumulation of SUMOylated hSpt16 subunits required for the expression of E26 transformation-specific sequence-1 (ETS-1)-a transcription factor that activates virus restriction programs. However, biochemical studies show that poxvirus-encoded A51R proteins block ETS-1 expression by outcompeting structure-specific recognition protein-1 binding to SUMOylated hSpt16 and by tethering SUMOylated hSpt16 to microtubules. Furthermore, A51R antagonism of FACT enhances poxvirus replication in human cells and virulence in mice. Finally, we show that FACT also restricts rhabdoviruses, flaviviruses and orthomyxoviruses, suggesting broad roles for FACT in antiviral immunity. Our study reveals the FACT-ETS-1 antiviral response (FEAR) pathway to be critical for eukaryotic antiviral immunity and describes a unique mechanism of viral immune evasion.


Assuntos
Evasão da Resposta Imune , Interferons , Humanos , Animais , Camundongos , Cromatina
19.
Front Public Health ; 12: 1347334, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807995

RESUMO

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging crisis affecting the public health system. The clinical features of COVID-19 can range from an asymptomatic state to acute respiratory syndrome and multiple organ dysfunction. Although some hematological and biochemical parameters are altered during moderate and severe COVID-19, there is still a lack of tools to combine these parameters to predict the clinical outcome of a patient with COVID-19. Thus, this study aimed at employing hematological and biochemical parameters of patients diagnosed with COVID-19 in order to build machine learning algorithms for predicting COVID mortality or survival. Patients included in the study had a diagnosis of SARS-CoV-2 infection confirmed by RT-PCR and biochemical and hematological measurements were performed in three different time points upon hospital admission. Among the parameters evaluated, the ones that stand out the most are the important features of the T1 time point (urea, lymphocytes, glucose, basophils and age), which could be possible biomarkers for the severity of COVID-19 patients. This study shows that urea is the parameter that best classifies patient severity and rises over time, making it a crucial analyte to be used in machine learning algorithms to predict patient outcome. In this study optimal and medically interpretable machine learning algorithms for outcome prediction are presented for each time point. It was found that urea is the most paramount variable for outcome prediction over all three time points. However, the order of importance of other variables changes for each time point, demonstrating the importance of a dynamic approach for an effective patient's outcome prediction. All in all, the use of machine learning algorithms can be a defining tool for laboratory monitoring and clinical outcome prediction, which may bring benefits to public health in future pandemics with newly emerging and reemerging SARS-CoV-2 variants of concern.


Assuntos
Algoritmos , COVID-19 , Aprendizado de Máquina , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Adulto , Biomarcadores/sangue , Idoso , Prognóstico
20.
Virus Res ; 340: 199291, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065303

RESUMO

Here, the antiviral activity of aminoadamantane derivatives were evaluated against SARS-CoV-2. The compounds exhibited low cytotoxicity to Vero, HEK293 and CALU-3 cells up to a concentration of 1,000 µM. The inhibitory concentration (IC50) of aminoadamantane was 39.71 µM in Vero CCL-81 cells and the derivatives showed significantly lower IC50 values, especially for compounds 3F4 (0.32 µM), 3F5 (0.44 µM) and 3E10 (1.28 µM). Additionally, derivatives 3F5 and 3E10 statistically reduced the fluorescence intensity of SARS-CoV-2 protein S from Vero cells at 10 µM. Transmission microscopy confirmed the antiviral activity of the compounds, which reduced cytopathic effects induced by the virus, such as vacuolization, cytoplasmic projections, and the presence of myelin figures derived from cellular activation in the face of infection. Additionally, it was possible to observe a reduction of viral particles adhered to the cell membrane and inside several viral factories, especially after treatment with 3F4. Moreover, although docking analysis showed favorable interactions in the catalytic site of Cathepsin L, the enzymatic activity of this enzyme was not inhibited significantly in vitro. The new derivatives displayed lower predicted toxicities than aminoadamantane, which was observed for either rat or mouse models. Lastly, in vivo antiviral assays of aminoadamantane derivatives in BALB/cJ mice after challenge with the mouse-adapted strain of SARS-CoV-2, corroborated the robust antiviral activity of 3F4 derivative, which was higher than aminoadamantane and its other derivatives. Therefore, aminoadamantane derivatives show potential broad-spectrum antiviral activity, which may contribute to COVID-19 treatment in the face of emerging and re-emerging SARS-CoV-2 variants of concern.


Assuntos
COVID-19 , SARS-CoV-2 , Chlorocebus aethiops , Humanos , Animais , Camundongos , Ratos , Tratamento Farmacológico da COVID-19 , Células HEK293 , Células Vero , Amantadina , Antivirais/farmacologia , Antivirais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA