Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Parasit Vectors ; 15(1): 99, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313982

RESUMO

BACKGROUND: Most cystic echinococcosis cases in Southern Brazil are caused by Echinococcus granulosus and Echinococcus ortleppi. Proteomic studies of helminths have increased our knowledge about the molecular survival strategies that are used by parasites. Here, we surveyed the protein content of the hydatid fluid compartment in E. granulosus and E. ortleppi pulmonary bovine cysts to better describe and compare their molecular arsenal at the host-parasite interface. METHODS: Hydatid fluid samples from three isolates of each species were analyzed using mass spectrometry-based proteomics (LC-MS/MS). In silico functional analyses of the identified proteins were performed to examine parasite survival strategies. RESULTS: The identified hydatid fluid protein profiles showed a predominance of parasite proteins compared to host proteins that infiltrate the cysts. We identified 280 parasitic proteins from E. granulosus and 251 from E. ortleppi, including 52 parasitic proteins that were common to all hydatid fluid samples. The in silico functional analysis revealed important molecular functions and processes that are active in pulmonary cystic echinococcosis, such as adhesion, extracellular structures organization, development regulation, signaling transduction, and enzyme activity. CONCLUSIONS: The protein profiles described here provide evidence of important mechanisms related to basic cellular processes and functions that act at the host-parasite interface in cystic echinococcosis. The molecular tools used by E. granulosus and E. ortleppi for survival within the host are potential targets for new therapeutic approaches to treat cystic echinococcosis and other larval cestodiases.


Assuntos
Equinococose Pulmonar , Echinococcus granulosus , Animais , Bovinos , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem
2.
PLoS Negl Trop Dis ; 12(5): e0006473, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29727452

RESUMO

BACKGROUND: Cystic hydatid disease is a zoonosis caused by the larval stage (hydatid) of Echinococcus granulosus (Cestoda, Taeniidae). The hydatid develops in the viscera of intermediate host as a unilocular structure filled by the hydatid fluid, which contains parasitic excretory/secretory products. The lipoprotein Antigen B (AgB) is the major component of E. granulosus metacestode hydatid fluid. Functionally, AgB has been implicated in immunomodulation and lipid transport. However, the mechanisms underlying AgB functions are not completely known. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated AgB interactions with different mammalian cell types and the pathways involved in its internalization. AgB uptake was observed in four different cell lines, NIH-3T3, A549, J774 and RH. Inhibition of caveolae/raft-mediated endocytosis causes about 50 and 69% decrease in AgB internalization by RH and A549 cells, respectively. Interestingly, AgB colocalized with the raft endocytic marker, but also showed a partial colocalization with the clathrin endocytic marker. Finally, AgB colocalized with an endolysosomal tracker, providing evidence for a possible AgB destination after endocytosis. CONCLUSIONS/SIGNIFICANCE: The results indicate that caveolae/raft-mediated endocytosis is the main route to AgB internalization, and that a clathrin-mediated entry may also occur at a lower frequency. A possible fate for AgB after endocytosis seems to be the endolysosomal system. Cellular internalization and further access to subcellular compartments could be a requirement for AgB functions as a lipid carrier and/or immunomodulatory molecule, contributing to create a more permissive microenvironment to metacestode development and survival.


Assuntos
Antígenos de Helmintos/metabolismo , Equinococose/parasitologia , Echinococcus granulosus/metabolismo , Endocitose , Proteínas de Helminto/metabolismo , Animais , Linhagem Celular , Equinococose/fisiopatologia , Echinococcus granulosus/genética , Humanos , Camundongos
3.
Int J Parasitol ; 46(13-14): 843-856, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27771257

RESUMO

The genus Echinococcus consists of parasites that have a life cycle with two mammalian hosts. Their larval stage, called the hydatid cyst, develops predominantly in the liver and lungs of intermediate hosts. The hydatid cyst is the causative agent of cystic hydatid disease and the species Echinococcus granulosus, G1 haplotype, is responsible for the vast majority of cases in humans, cattle and sheep. Protein characterization in hydatid cysts is essential for better understanding of the host-parasite relationship and the fertility process of Echinococcus. The aims of this work were the identification and quantitative comparison of proteins found in hydatid fluid from fertile and infertile cysts from E. granulosus, in order to highlight possible mechanisms involved in cyst fertility or infertility. Hydatid fluid samples containing proteins from both E. granulosus and Bos taurus were analysed by LC-MS/MS. Our proteomic analysis of fertile and infertile cysts allowed identification of a total of 498 proteins, of which 153 proteins were exclusively identified in the fertile cyst, 271 in the infertile cyst, and 74 in both. Functional in silico analysis allowed us to highlight some important aspects: (i) clues about the possible existence of an "arms race" involving parasite and host responses in fertile and infertile cysts; (ii) a number of proteins in hydatid fluid without functional annotation or with possible alternative functions; (iii) the presence of extracellular vesicles such as exosomes, which was confirmed by transmission electron microscopy.


Assuntos
Antígenos de Helmintos/imunologia , Doenças dos Bovinos/parasitologia , Equinococose/parasitologia , Echinococcus granulosus/imunologia , Proteínas de Helminto/imunologia , Animais , Antígenos de Helmintos/genética , Bovinos , Doenças dos Bovinos/transmissão , Cromatografia Líquida , Equinococose/transmissão , Echinococcus granulosus/classificação , Haplótipos , Proteínas de Helminto/genética , Interações Hospedeiro-Parasita , Larva/imunologia , Pulmão/parasitologia , Proteínas/genética , Proteínas/imunologia , Proteômica , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA