Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(12): 3678-3685, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38471109

RESUMO

Control over the optical properties of atomically thin two-dimensional (2D) layers, including those of transition metal dichalcogenides (TMDs), is needed for future optoelectronic applications. Here, the near-field coupling between TMDs and graphene/graphite is used to engineer the exciton line shape and charge state. Fano-like asymmetric spectral features are produced in WS2, MoSe2, and WSe2 van der Waals heterostructures combined with graphene, graphite, or jointly with hexagonal boron nitride (h-BN) as supporting or encapsulating layers. Furthermore, trion emission is suppressed in h-BN encapsulated WSe2/graphene with a neutral exciton red shift (44 meV) and binding energy reduction (30 meV). The response of these systems to electron beam and light probes is well-described in terms of 2D optical conductivities of the involved materials. Beyond fundamental insights into the interaction of TMD excitons with structured environments, this study opens an unexplored avenue toward shaping the spectral profile of narrow optical modes for application in nanophotonic devices.

2.
Nat Mater ; 22(9): 1094-1099, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37365227

RESUMO

The control of elastic and inelastic electron tunnelling relies on materials with well-defined interfaces. Two-dimensional van der Waals materials are an excellent platform for such studies. Signatures of acoustic phonons and defect states have been observed in current-to-voltage measurements. These features can be explained by direct electron-phonon or electron-defect interactions. Here we use a tunnelling process that involves excitons in transition metal dichalcogenides (TMDs). We study tunnel junctions consisting of graphene and gold electrodes separated by hexagonal boron nitride with an adjacent TMD monolayer and observe prominent resonant features in current-to-voltage measurements appearing at bias voltages that correspond to TMD exciton energies. By placing the TMD outside of the tunnelling pathway, we demonstrate that this tunnelling process does not require any charge injection into the TMD. The appearance of such optical modes in electrical transport introduces additional functionality towards van der Waals material-based optoelectronic devices.

3.
Nano Lett ; 23(10): 4242-4249, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37172322

RESUMO

A rigorous account of quantum nonlocal effects is paramount for understanding the optical response of metal nanostructures and for designing plasmonic devices at the nanoscale. Here, we present a scheme for retrieving the quantum surface response of metals, encapsulated in the Feibelman d-parameters, from electron energy-loss spectroscopy (EELS) and cathodoluminescence (CL) measurements. We theoretically demonstrate that quantum nonlocal effects have a dramatic impact on EELS and CL spectra, in the guise of spectral shifts and nonlocal damping, when either the system size or the inverse wave vector in extended structures approaches the nanometer scale. Our concept capitalizes on the unparalleled ability of free electrons to supply deeply subwavelength near-fields and, thus, probe the optical response of metals at length scales in which quantum-mechanical effects are apparent. These results pave the way for a widespread use of the d-parameter formalism, thereby facilitating a rigorous yet practical inclusion of nonclassical effects in nanoplasmonics.

4.
Phys Rev Lett ; 130(24): 246901, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37390412

RESUMO

The ability to modulate free electrons with light has emerged as a powerful tool to produce attosecond electron wave packets. However, research has so far aimed at the manipulation of the longitudinal wave function component, while the transverse degrees of freedom have primarily been utilized for spatial rather than temporal shaping. Here, we show that the coherent superposition of parallel light-electron interactions in transversally separate zones allows for a simultaneous spatial and temporal compression of a convergent electron wave function, enabling the formation of sub-Ångström focal spots of attosecond duration. Specifically, spots spanning just ∼3% of the light optical cycle are shown to be formed, accompanied by an increase by only a factor of 2 in spatial extension relative to an unperturbed beam. The proposed approach will facilitate the exploration of previously inaccessible ultrafast atomic-scale phenomena, in particular enabling attosecond scanning transmission electron microscopy.

5.
Nano Lett ; 22(16): 6737-6743, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35920815

RESUMO

The emergence of dielectric open optical cavities has opened a new research avenue in nanophotonics. In particular, dielectric microspheres support a rich set of cavity modes with varying spectral characteristics, making them an ideal platform to study molecule-cavity interactions. The symmetry of the structure plays a critical role in the outcoupling of these modes and, hence, the perceived molecule-cavity coupling strength. Here, we experimentally and theoretically study molecule-cavity coupling mediated by the Mie scattering modes of a dielectric microsphere placed on a glass substrate and excited with far-field illumination, from which we collect scattering signatures both in the air and glass sides. Glass-side collection reveals clear signatures of strong molecule-cavity coupling (coupling strength 2g = 74 meV), in contrast to the air-side scattering signal. Rigorous electromagnetic modeling allows us to understand molecule-cavity coupling and unravel the role played by the spatial mode profile in the observed coupling strength.

6.
Nano Lett ; 22(1): 319-327, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34907775

RESUMO

Whispering-gallery mode resonators host multiple trapped narrow-band circulating optical resonances that find applications in quantum electrodynamics, optomechanics, and sensing. However, the spherical symmetry and low field leakage of dielectric microspheres make it difficult to probe their high-quality optical modes using far-field radiation. Even so, local field enhancement from metallic nanoparticles (MNPs) coupled to the resonators can interface the optical far field and the bounded cavity modes. In this work, we study the interaction between whispering-gallery modes and MNP surface plasmons with nanometric spatial resolution by using electron-beam spectroscopy with a scanning transmission electron microscope. We show that gallery modes are induced over a selective spectral range of the nanoparticle plasmons, and additionally, their polarization can be controlled by the induced dipole moment of the MNP. Our study demonstrates a viable mechanism to effectively excite high-quality-factor whispering-gallery modes and holds potential for applications in optical sensing and light manipulation.

7.
Nano Lett ; 22(21): 8455-8462, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36305718

RESUMO

High-harmonic generation (HHG), an extreme nonlinear optical phenomenon beyond the perturbation regime, is of great significance for various potential applications, such as high-energy ultrashort pulse generation with outstanding spatiotemporal coherence. However, efficient active control of HHG is still challenging due to the weak light-matter interaction displayed by currently known materials. Here, we demonstrate optically controlled HHG in monolayer semiconductors via the engineering of interband polarization. We find that HHG can be efficiently controlled in the excitonic spectral region with modulation depths up to 95% and ultrafast response speeds of several picoseconds. Quantitative time-domain theory of the nonlinear optical susceptibilities in monolayer semiconductors further corroborates these experimental observations. Our demonstration not only offers an in-depth understanding of HHG but also provides an effective approach toward active optical devices for strong-field physics and extreme nonlinear optics.

8.
Small ; 18(16): e2106897, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35279954

RESUMO

BaSnO3 exhibits the highest carrier mobility among perovskite oxides, making it ideal for oxide electronics. Collective charge carrier oscillations known as plasmons are expected to arise in this material, thus providing a tool to control the nanoscale optical field for optoelectronics applications. Here, the existence of relatively long-lived plasmons supported by high-mobility charge carriers in La-doped BaSnO3 (BLSO) is demonstrated. By exploiting the high spatial and energy resolution of electron energy-loss spectroscopy with a focused beam in a scanning transmission electron microscope, the dispersion, confinement ratio, and damping of infrared localized surface plasmons (LSPs) in BLSO nanoparticles are systematically investigated. It is found that LSPs in BLSO exhibit a high degree of spatial confinement compared to those sustained by noble metals and have relatively low losses and high quality factors with respect to other doped oxides. Further analysis clarifies the relation between plasmon damping and carrier mobility in BLSO. The results support the use of nanostructured degenerate semiconductors for plasmonic applications in the infrared region and establish a solid alternative to more traditional plasmonic materials.

9.
Nat Mater ; 20(1): 43-48, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32807920

RESUMO

Phonon polaritons enable light confinement at deep subwavelength scales, with potential technological applications, such as subdiffraction imaging, sensing and engineering of spontaneous emission. However, the trade-off between the degree of confinement and the excitation efficiency of phonon polaritons prevents direct observation of these modes in monolayer hexagonal boron nitride (h-BN), where they are expected to reach ultrahigh confinement. Here, we use monochromatic electron energy-loss spectroscopy (about 7.5 meV energy resolution) in a scanning transmission electron microscope to measure phonon polaritons in monolayer h-BN, directly demonstrating the existence of these modes as the phonon Reststrahlen band (RS) disappears. We find phonon polaritons in monolayer h-BN to exhibit high confinement (>487 times smaller wavelength than that of light in free space) and ultraslow group velocity down to about 10-5c. The large momentum compensation provided by electron beams additionally allows us to excite phonon polaritons over nearly the entire RS band of multilayer h-BN. These results open up a broad range of opportunities for the engineering of metasurfaces and strongly enhanced light-matter interactions.

10.
Phys Rev Lett ; 129(9): 093401, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36083663

RESUMO

We reveal a wealth of nonlinear and recoil effects in the interaction between individual low-energy electrons (≲100 eV) and samples comprising a discrete number of states. Adopting a quantum theoretical description of combined free-electron and two-level systems, we find a maximum achievable excitation probability of 100%, which requires specific conditions relating to the coupling strength and the transition symmetry, as we illustrate through calculations for dipolar and quadrupolar modes. Strong recoil effects are observed when the kinetic energy of the probe lies close to the transition threshold, although the associated probability remains independent of the electron wave function even when fully accounting for nonlinear interactions with arbitrarily complex multilevel samples. Our work reveals the potential of free electrons to control localized excitations and delineates the boundaries of such control.

11.
Phys Rev Lett ; 128(14): 147401, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35476465

RESUMO

We use a novel scanning electron Mach-Zehnder interferometer constructed in a conventional transmission electron microscope to perform inelastic interferometric imaging with free electrons. An electron wave function is prepared in two paths that pass on opposite sides of a gold nanoparticle, where plasmons are excited before the paths are recombined to produce electron interference. We show that the measured spectra are consistent with theoretical predictions, specifically that the interference signal formed by inelastically scattered electrons is π out of phase with respect to that formed by elastically scattered electrons. This technique is sensitive to the phase of localized optical modes, because the interference signal amounts to a substantial fraction of the transmitted electrons. Thus, we argue that inelastic interferometric imaging with our scanning electron Mach-Zehnder interferometer provides a new platform for controlling the transverse momentum of free electrons and studying coherent electron-matter interactions at the nanoscale.

12.
Proc Natl Acad Sci U S A ; 116(17): 8173-8177, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30952783

RESUMO

Structural information on electronically excited neutral molecules can be indirectly retrieved, largely through pump-probe and rotational spectroscopy measurements with the aid of calculations. Here, we demonstrate the direct structural retrieval of neutral carbonyl disulfide (CS2) in the [Formula: see text] excited electronic state using laser-induced electron diffraction (LIED). We unambiguously identify the ultrafast symmetric stretching and bending of the field-dressed neutral CS2 molecule with combined picometer and attosecond resolution using intrapulse pump-probe excitation and measurement. We invoke the Renner-Teller effect to populate the [Formula: see text] excited state in neutral CS2, leading to bending and stretching of the molecule. Our results demonstrate the sensitivity of LIED in retrieving the geometric structure of CS2, which is known to appear as a two-center scatterer.

13.
Nano Lett ; 21(6): 2444-2452, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33651617

RESUMO

Silver, king among plasmonic materials, features low inelastic absorption in the visible-infrared (vis-IR) spectral region compared to other metals. In contrast, copper is commonly regarded as too lossy for actual applications. Here, we demonstrate vis-IR plasmons with quality factors >60 in long copper nanowires (NWs), as determined by electron energy-loss spectroscopy. We explain this result by noticing that most of the electromagnetic energy in these plasmons lies outside the metal, thus becoming less sensitive to inelastic absorption. Measurements for silver and copper NWs of different diameters allow us to elucidate the relative importance of radiative and nonradiative losses in plasmons spanning a wide spectral range down to <20 meV. Thermal population of such low-energy modes becomes significant and generates electron energy gains associated with plasmon absorption, rendering an experimental determination of the NW temperature. Copper is therefore emerging as an attractive, cheap, abundant material platform for high-quality plasmonics in elongated nanostructures.

14.
Small ; 17(39): e2103404, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34453472

RESUMO

Hyperbolic phonon polaritons (HPhPs) in hexagonal boron nitride (hBN) enable the direct manipulation of mid-infrared light at nanometer scales, many orders of magnitude below the free-space light wavelength. High-resolution monochromated electron energy-loss spectroscopy (EELS) facilitates measurement of excitations with energies extending into the mid-infrared while maintaining nanoscale spatial resolution, making it ideal for detecting HPhPs. The electron beam is a precise source and probe of HPhPs, which allows the observation of nanoscale confinement in HPhP structures and directly extract hBN polariton dispersions for both modes in the bulk of the flake and modes along the edge. The measurements reveal technologically important nontrivial phenomena, such as localized polaritons induced by environmental heterogeneity, enhanced and suppressed excitation due to 2D interference, and strong modification of high-momenta excitations such as edge-confined polaritons by nanoscale heterogeneity on edge boundaries. The work opens exciting prospects for the design of real-world optical mid-infrared devices based on hyperbolic polaritons.

15.
Nat Mater ; 19(8): 830-837, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32632282

RESUMO

Semimetals are being explored for their unique advantages in low-energy high-speed photodetection, although they suffer from serious drawbacks such as an intrinsically high dark current. In this Perspective, we envision the exploitation of topological effects in the photoresponse of these materials as a promising route to circumvent these problems. We overview recent studies on photodetection based on graphene and other semimetals, and further discuss the opportunities created by topological effects, along with the additional challenges that they impose on photodetector designs.

16.
Opt Lett ; 46(4): 833-836, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577523

RESUMO

Noble metals with well-defined crystallographic orientation constitute an appealing class of materials for controlling light-matter interactions on the nanoscale. Nonlinear optical processes, being particularly sensitive to anisotropy, are a natural and versatile probe of crystallinity in nano-optical devices. Here we study the nonlinear optical response of monocrystalline gold flakes, revealing a polarization dependence in second-harmonic generation from the {111} surface that is markedly absent in polycrystalline films. Our findings confirm that second-harmonic microscopy is a robust and non-destructive method for probing the crystallographic orientation of gold, and can serve as a guideline for enhancing nonlinear response in plasmonic systems.

17.
Phys Rev Lett ; 126(6): 069902, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33635719

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.126.019501.

18.
Phys Rev Lett ; 126(12): 123901, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33834791

RESUMO

We exploit free-space interactions between electron beams and tailored light fields to imprint on-demand phase profiles on the electron wave functions. Through rigorous semiclassical theory involving a quantum description of the electrons, we show that monochromatic optical fields focused in vacuum can be used to correct electron beam aberrations and produce selected focal shapes. Stimulated elastic Compton scattering is exploited to imprint the required electron phase, which is proportional to the integral of the optical field intensity along the electron path and depends on the transverse beam position. The required light intensities are attainable in currently available ultrafast electron microscope setups, thus opening the field of free-space optical manipulation of electron beams.

19.
Phys Rev Lett ; 127(15): 157404, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34678034

RESUMO

Probing optical excitations with high resolution is important for understanding their dynamics and controlling their interaction with other photonic elements. This can be done using state-of-the-art electron microscopes, which provide the means to sample optical excitations with combined meV-sub-nm energy-space resolution. For reciprocal photonic systems, electrons traveling in opposite directions produce identical signals, while this symmetry is broken in nonreciprocal structures. Here, we theoretically investigate this phenomenon by analyzing electron energy-loss spectroscopy (EELS) and cathodoluminescence (CL) for structures consisting of magnetically biased InAs as an instance of gyrotropic nonreciprocal material. We find that the spectral features associated with excitations of InAs films depend on the electron propagation direction in both EELS and CL, and can be tuned by varying the applied magnetic field within a relatively modest subtesla regime. The magnetic field modifies the optical field distribution of the sampled resonances, and this in turn produces a direction-dependent coupling to the electron. The present results pave the way to the use of electron microscope spectroscopies to explore the near-field characteristics of nonreciprocal systems with high spatial resolution.

20.
BJOG ; 128(8): 1364-1372, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33528862

RESUMO

OBJECTIVE: To compare the effect of inhaled nitrous oxide (INO) on pain control during in-office hysteroscopy with 1% lidocaine paracervical infiltration and no analgesic. DESIGN: Single-blind stratified randomised clinical trial with masked assessment by a third party. SETTING: Department of Obstetrics and Gynaecology in a Spanish hospital. POPULATION: Women who underwent hysteroscopy. METHODS: Patients were stratified into three groups according to the purpose of the hysteroscopy (biopsy, polypectomy or tubal sterilisation) and then assigned to different treatment groups through a permuted-blocks randomisation within strata. Pain scale was provided by a gynaecologist totally blinded to procedures and treatments. Effects were assessed using a one-way analysis of variance following an intention-to-treat approach. MAIN OUTCOME MEASURES: Visual analogue scale (VAS) from 0 to 100 mm. RESULTS: A total of 314 women were included: 105 to INO, 104 to 1% lidocaine and 105 to no analgesic. Baseline characteristics were comparable. Mean VAS score after the procedure was 34.7 ± 25.8 mm, 36.1 ± 22.9 mm (P = 1.0) and 47.3 ± 28.2 mm (P = 0.001) for INO, 1% lidocaine and no analgesic, respectively. No adverse events were reported in 91 (86.7%) patients in the INO group compared with 79 (76%) in the 1%-lidocaine group (P = 0.04) and 85 (81%) in the no-analgesic group (P = 0.26). CONCLUSION: INO was as effective as 1% lidocaine in pain control for in-office hysteroscopy and was better tolerated. The no-analgesic group presented the poorer results, so was the least recommended clinical option.


Assuntos
Assistência Ambulatorial , Anestésicos Inalatórios/administração & dosagem , Anestésicos Locais/administração & dosagem , Histeroscopia , Lidocaína/administração & dosagem , Óxido Nitroso/administração & dosagem , Manejo da Dor/métodos , Adulto , Anestésicos Inalatórios/efeitos adversos , Anestésicos Locais/efeitos adversos , Biópsia , Feminino , Humanos , Lidocaína/efeitos adversos , Pessoa de Meia-Idade , Óxido Nitroso/efeitos adversos , Pólipos/cirurgia , Método Simples-Cego , Esterilização Tubária , Neoplasias Uterinas/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA