Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Development ; 148(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33913482

RESUMO

In mammals, 24-h rhythms of physiology and behavior are organized by a body-wide network of clock genes and proteins. Despite the well-known function of the adult circadian system, the roles of maternal, fetal and placental clocks during pregnancy are poorly defined. In the mature mouse placenta, the labyrinth zone (LZ) is of fetal origin and key for selective nutrient and waste exchange. Recently, clock gene expression has been detected in LZ and other fetal tissues; however, there is no evidence of a placental function controlled by the LZ clock. Here, we demonstrate that specifically the trophoblast layer of the LZ harbors an already functional clock by late gestation, able to regulate in a circadian manner the expression and activity of the xenobiotic efflux pump, ATP-binding cassette sub-family B member 1 (ABCB1), likely gating the fetal exposure to drugs from the maternal circulation to certain times of the day. As more than 300 endogenous and exogenous compounds are substrates of ABCB1, our results might have implications in choosing the maternal treatment time when aiming either maximal/minimal drug availability to the fetus/mother.


Assuntos
Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Gravidez/fisiologia , Trofoblastos/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Feminino , Camundongos
2.
Artigo em Inglês | MEDLINE | ID: mdl-37972916

RESUMO

Light is a strong stimulus for the sensory and endocrine systems. The opsins constitute a large family of proteins that can respond to specific light wavelengths. Hippocampus reidi is a near-threatened seahorse that has a diverse color pattern and sexual dimorphism. Over the years, H. reidi's unique characteristics, coupled with its high demand and over-exploitation for the aquarium trade, have raised concerns about its conservation, primarily due to their significant impact on wild populations. Here, we characterized chromatophore types in juvenile and adult H. reidi in captivity, and the effects of specific light wavelengths with the same irradiance (1.20 mW/cm2) on color change, growth, and survival rate. The xanthophores and melanophores were the major components of H. reidi pigmentation with differences in density and distribution between life stages and sexes. In the eye and skin of juveniles, the yellow (585 nm) wavelength induced a substantial increase in melanin levels compared to the individuals kept under white light (WL), blue (442 nm), or red (650 nm) wavelengths. In addition, blue and yellow wavelengths led to a higher juvenile mortality rate in comparison to the other treatments. Adult seahorses showed a rhythmic color change over 24 h, the highest reflectance values were obtained in the light phase, representing a daytime skin lightening for individuals under WL, blue and yellow wavelength, with changes in the acrophase. The yellow wavelength was more effective on juvenile seahorse pigmentation, while the blue wavelength exerted a stronger effect on the regulation of adult physiological color change. Dramatic changes in the opsin mRNA levels were life stage-dependent, which may infer ontogenetic opsin functions throughout seahorses' development. Exposure to specific wavelengths differentially affected the opsins mRNA levels in the skin and eyes of juveniles. In the juveniles, skin transcripts of visual (rh1, rh2, and lws) and non-visual opsins (opn3 and opn4x) were higher in individuals under yellow light. While in the juvenile's eyes, only rh1 and rh2 had increased transcripts influenced by yellow light; the lws and opn3 mRNA levels were higher in juveniles' eyes under WL. Prolonged exposure to yellow wavelength stimulates a robust increase in the antioxidant enzymes sod1 and sod2 mRNA levels. Our findings indicate that changes in the visible light spectrum alter physiological processes at different stages of life in H. reidi and may serve as the basis for a broader discussion about the implications of artificial light for aquatic species in captivity.


Assuntos
Opsinas , Smegmamorpha , Humanos , Animais , Opsinas/genética , Opsinas/metabolismo , Pigmentação da Pele , Smegmamorpha/genética , Smegmamorpha/metabolismo , Oxirredução , RNA Mensageiro/metabolismo
3.
Cell Mol Life Sci ; 78(10): 4563-4587, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33683376

RESUMO

The circadian clock exerts an important role in systemic homeostasis as it acts a keeper of time for the organism. The synchrony between the daily challenges imposed by the environment needs to be aligned with biological processes and with the internal circadian clock. In this review, it is provided an in-depth view of the molecular functioning of the circadian molecular clock, how this system is organized, and how central and peripheral clocks communicate with each other. In this sense, we provide an overview of the neuro-hormonal factors controlled by the central clock and how they affect peripheral tissues. We also evaluate signals released by peripheral organs and their effects in the central clock and other brain areas. Additionally, we evaluate a possible communication between peripheral tissues as a novel layer of circadian organization by reviewing recent studies in the literature. In the last section, we analyze how the circadian clock can modulate intracellular and tissue-dependent processes of metabolic organs. Taken altogether, the goal of this review is to provide a systemic and integrative view of the molecular clock function and organization with an emphasis in metabolic tissues.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Homeostase/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Humanos
4.
Curr Issues Mol Biol ; 43(3): 1436-1450, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34698095

RESUMO

Skin melanocytes harbor a complex photosensitive system comprised of opsins, which were shown, in recent years, to display light- and thermo-independent functions. Based on this premise, we investigated whether melanopsin, OPN4, displays such a role in normal melanocytes. In this study, we found that murine Opn4KO melanocytes displayed a faster proliferation rate compared to Opn4WT melanocytes. Cell cycle population analysis demonstrated that OPN4KO melanocytes exhibited a faster cell cycle progression with reduced G0-G1, and highly increased S and slightly increased G2/M cell populations compared to the Opn4WT counterparts. Expression of specific cell cycle-related genes in Opn4KO melanocytes exhibited alterations that corroborate a faster cell cycle progression. We also found significant modification in gene and protein expression levels of important regulators of melanocyte physiology. PER1 protein level was higher while BMAL1 and REV-ERBα decreased in Opn4KO melanocytes compared to Opn4WT cells. Interestingly, the gene expression of microphthalmia-associated transcription factor (MITF) was upregulated in Opn4KO melanocytes, which is in line with a higher proliferative capability. Taken altogether, we demonstrated that OPN4 regulates cell proliferation, cell cycle, and affects the expression of several important factors of the melanocyte physiology; thus, arguing for a putative tumor suppression role in melanocytes.


Assuntos
Ciclo Celular/genética , Melanócitos/metabolismo , Opsinas de Bastonetes/deficiência , Animais , Biomarcadores , Proteínas CLOCK/genética , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Melanócitos/efeitos dos fármacos , Camundongos , Pele/citologia , Pele/metabolismo
5.
Cell Tissue Res ; 385(3): 519-538, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34236517

RESUMO

Since the discovery of melanopsin as a retinal non-visual photopigment, opsins have been described in several organs and cells. This distribution is strikingly different from the classical localization of photopigments in light-exposed tissues such as the eyes and the skin. More than 10 years ago, a new paradigm in the field was created as opsins were shown, to detect not only light, but also thermal energy in Drosophila. In agreement with these findings, thermal detection by opsins was also reported in mammalian cells. Considering the presence of opsins in tissues not reached by light, an intriguing question has emerged: What is the role of a classical light-sensor, and more recently appreciated thermo-sensor, in these tissues? To tackle this question, we address in this review the most recent studies in the field, with emphasis in mammals. We provide the present view about the role of opsins in peripheral tissues, aiming to integrate the current knowledge of the presence and function of opsins in organs that are not directly affected by light.


Assuntos
Luz , Opsinas/metabolismo , Retina/fisiologia
6.
Cell Mol Life Sci ; 76(19): 3801-3826, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31222374

RESUMO

The skin is the interface between the organism and the external environment, acting as its first barrier. Thus, this organ is constantly challenged by physical stimuli such as UV and infrared radiation, visible light, and temperature as well as chemicals and pathogens. To counteract the deleterious effects of the above-mentioned stimuli, the skin has complex defense mechanisms such as: immune and neuroendocrine systems; shedding of epidermal squamous layers and apoptosis of damaged cells; DNA repair; and pigmentary system. Here we have reviewed the current knowledge regarding which stimuli affect the molecular clock of the skin, the consequences to skin-related biological processes and, based on such knowledge, we suggest some therapeutic targets. We also explored the recent advances regarding the molecular clock disruption in melanoma, its impact on the carcinogenic process, and its therapeutic value in melanoma treatment.


Assuntos
Relógios Circadianos , Melanoma/etiologia , Neoplasias Cutâneas/etiologia , Fenômenos Fisiológicos da Pele , Animais , Humanos , Melanoma/tratamento farmacológico , Pele/metabolismo , Neoplasias Cutâneas/tratamento farmacológico
7.
Heart Vessels ; 35(5): 719-730, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31820090

RESUMO

Activation of mineralocorticoid receptor antagonists (MRAs) is cardioprotective; however, this property is lost upon blockade or inactivation of adenosine (ADO) receptor A2b. In this study, we investigated whether the effects of MRAs are mediated by an interaction between cardioprotective ADO receptors A1 and A3. Spironolactone (SPI) or eplerenone (EPL) increased ADO levels in the plasma of treated animals compared to control animals. SPI or EPL increased the protein and activity levels of ecto-5'-nucleotidase (NT5E), an enzyme that synthesizes ADO, compared to control. The levels of ADO deaminase (ADA), which degrades ADO, were not affected by SPI or EPL; however, the activity of ADA was reduced in SPI-treated rats compared to control. Using an isolated cardiomyocyte model, we found inotropic and chronotropic effects, and increased calcium transient [Ca2+]i in cells treated with ADO receptor A1 or A3 antagonists compared to control groups. Upon co-treatment with MRAs, EPL and SPI fully and partially reverted the effects of receptor A1 or A3 antagonism, respectively. Collectively, MRAs in vivo lead to increased ADO bioavailability. In vitro, the rapid effects of SPI and EPL are mediated by an interaction between ADO receptors A1 and A3.


Assuntos
Adenosina/metabolismo , Eplerenona/farmacologia , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Espironolactona/farmacologia , 5'-Nucleotidase/metabolismo , Adenosina Desaminase/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Proteínas Ligadas por GPI/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/metabolismo , Ratos Wistar , Receptor A1 de Adenosina/metabolismo , Receptor A3 de Adenosina/metabolismo , Regulação para Cima
8.
Biochim Biophys Acta Mol Cell Res ; 1864(2): 324-335, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27864077

RESUMO

Transient receptor potential (TRPs) channels are involved in thermogenesis, and temperature and energy balance control. Mice lacking TrpV1 become more obese and develop insulin resistance when fed with high fat diet; however, a relationship between metabolic disorders, TRP channels, and clock genes is still unknown. Based on this, we hypothesized that TRPV1 channels would be involved in the synchronization of clock genes in the peripheral tissues. To address this question, we used wild type (WT) and TrpV1 knockout (KO) mice kept in constant darkness (DD) or in light-dark cycle (LD). In WT mouse brown adipose tissue (BAT), TrpV1 oscillated with higher expression at scotophase, Per1 and Per2 showed the same profile, and Bmal1 transcript only oscillated in DD. Interestingly, the oscillatory profile of these clock genes was abolished in TrpV1 KO mice. WT mouse Ucp1 was upregulated in LD as compared to DD, showing no temporal variation; mice lacking TrpV1 showed Ucp1 oscillation with a peak at the photophase. Remarkably, TrpV1 KO mice displayed less total activity than WT only when submitted to LD. We provide evidence that TRPV1 is an important modulator of BAT clock gene oscillations. Therefore, temperature and/or light-dependent regulation of TRPV1 activity might provide novel pharmacological approaches to treat metabolic disorders.


Assuntos
Tecido Adiposo Marrom/metabolismo , Escuridão , Luz , Fotoperíodo , Canais de Cátion TRPV/fisiologia , Animais , Perfilação da Expressão Gênica , Locomoção , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canais de Cátion TRPV/genética , Proteína Desacopladora 1/genética
9.
Biochim Biophys Acta Mol Cell Res ; 1864(12): 2415-2427, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28943398

RESUMO

Transient receptor potential (TRP) channels are known to regulate energy metabolism, and TRPM8 has become an interesting player in this context. Here we demonstrate the role of the cold sensor TRPM8 in the regulation of clock gene and clock controlled genes in brown adipose tissue (BAT). We investigated TrpM8 temporal profile in the eyes, suprachiasmatic nucleus and BAT; only BAT showed temporal variation of TrpM8 transcripts. Eyes from mice lacking TRPM8 lost the temporal profile of Per1 in LD cycle. This alteration in the ocular circadian physiology may explain the delay in the onset of locomotor activity in response to light pulse, as compared to wild type animals (WT). Brown adipocytes from TrpM8 KO mice exhibited a larger multilocularity in comparison to WT or TrpV1 KO mice. In addition, Ucp1 and UCP1 expression was significantly reduced in TrpM8 KO mice in comparison to WT mice. Regarding circadian components, the expression of Per1, Per2, Bmal1, Pparα, and Pparß oscillated in WT mice kept in LD, whereas in the absence of TRPM8 the expression of clock genes was reduced in amplitude and lack temporal oscillation. Thus, our results reveal new roles for TRPM8 channel: it participates in the regulation of clock and clock-controlled genes in the eyes and BAT, and in BAT thermogenesis. Since disruption of the clock machinery has been associated with many metabolic disorders, the pharmacological modulation of TRPM8 channel may become a promising therapeutic target to counterbalance weight gain, through increased thermogenesis, energy expenditure, and clock gene activation.


Assuntos
Tecido Adiposo Marrom/metabolismo , Ritmo Circadiano/genética , Canais de Cátion TRPM/genética , Termogênese/genética , Tecido Adiposo Marrom/crescimento & desenvolvimento , Animais , Metabolismo Energético/genética , Olho/crescimento & desenvolvimento , Olho/metabolismo , Camundongos , Camundongos Knockout , Sensação Térmica/genética
10.
Int J Mol Sci ; 19(4)2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29614021

RESUMO

The biological clock has received increasing interest due to its key role in regulating body homeostasis in a time-dependent manner. Cancer development and progression has been linked to a disrupted molecular clock; however, in melanoma, the role of the biological clock is largely unknown. We investigated the effects of the tumor on its micro- (TME) and macro-environments (TMaE) in a non-metastatic melanoma model. C57BL/6J mice were inoculated with murine B16-F10 melanoma cells and 2 weeks later the animals were euthanized every 6 h during 24 h. The presence of a localized tumor significantly impaired the biological clock of tumor-adjacent skin and affected the oscillatory expression of genes involved in light- and thermo-reception, proliferation, melanogenesis, and DNA repair. The expression of tumor molecular clock was significantly reduced compared to healthy skin but still displayed an oscillatory profile. We were able to cluster the affected genes using a human database and distinguish between primary melanoma and healthy skin. The molecular clocks of lungs and liver (common sites of metastasis), and the suprachiasmatic nucleus (SCN) were significantly affected by tumor presence, leading to chronodisruption in each organ. Taken altogether, the presence of non-metastatic melanoma significantly impairs the organism's biological clocks. We suggest that the clock alterations found in TME and TMaE could impact development, progression, and metastasis of melanoma; thus, making the molecular clock an interesting pharmacological target.


Assuntos
Relógios Circadianos , Regulação Neoplásica da Expressão Gênica , Melanoma/metabolismo , Animais , Linhagem Celular Tumoral , Fígado/metabolismo , Pulmão/metabolismo , Melanoma/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Pele/metabolismo , Núcleo Supraquiasmático/metabolismo , Microambiente Tumoral
11.
Heart Fail Rev ; 22(1): 65-89, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27942913

RESUMO

Aldosterone is the most known mineralocorticoid hormone synthesized by the adrenal cortex. The genomic pathway displayed by aldosterone is attributed to the mineralocorticoid receptor (MR) signaling. Even though the rapid effects displayed by aldosterone are long known, our knowledge regarding the receptor responsible for such event is still poor. It is intense that the debate whether the MR or another receptor-the "unknown receptor"-is the receptor responsible for the rapid effects of aldosterone. Recently, G protein-coupled estrogen receptor-1 (GPER-1) was elegantly shown to mediate some aldosterone-induced rapid effects in several tissues, a fact that strongly places GPER-1 as the unknown receptor. It has also been suggested that angiotensin receptor type 1 (AT1) also participates in the aldosterone-induced rapid effects. Despite this open question, the relevance of the beneficial effects of aldosterone is clear in the kidneys, colon, and CNS as aldosterone controls the important water reabsorption process; on the other hand, detrimental effects displayed by aldosterone have been reported in the cardiovascular system and in the kidneys. In this line, the MR antagonists are well-known drugs that display beneficial effects in patients with heart failure and hypertension; it has been proposed that MR antagonists could also play an important role in vascular disease, obesity, obesity-related hypertension, and metabolic syndrome. Taken altogether, our goal here was to (1) bring a historical perspective of both genomic and rapid effects of aldosterone in several tissues, and the receptors and signaling pathways involved in such processes; and (2) critically address the controversial points within the literature as regarding which receptor participates in the rapid pathway display by aldosterone.


Assuntos
Aldosterona/fisiologia , Sistema Cardiovascular/efeitos dos fármacos , Regulação da Expressão Gênica , Genômica/métodos , Insuficiência Cardíaca , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Receptores de Mineralocorticoides/genética , Animais , Sistema Cardiovascular/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , RNA/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Mineralocorticoides/biossíntese , Transdução de Sinais
12.
Photochem Photobiol Sci ; 16(5): 633-648, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28203671

RESUMO

The skin is under the influence of oscillatory factors such as light and temperature. This organ possesses a local system that controls several aspects in a time-dependent manner; moreover, the skin has a well-known set of opsins whose function is still unknown. We demonstrate that heat shock reduces Opn2 expression in normal Melan-a melanocytes, while the opposite effect is found in malignant B16-F10 cells. In both cell lines, UVA radiation increases the expression of Opn4 and melanin content. Clock genes and Xpa, a DNA repair gene, of malignant melanocytes are more responsive to UVA radiation when compared to normal cells. Most UVA-induced effects are antagonized by heat shock, a phenomenon shown for the first time. Based on our data, the heat produced during UV experiments should be carefully monitored since temperature represents, according to our results, an important confounding factor, and therefore it should, when possible, be dissociated from UV radiation. The responses displayed by murine melanoma cells, if proven to also take place in human melanoma, may represent an important step in cancer development and progression.


Assuntos
Temperatura Alta , Melanócitos/citologia , Melanoma/patologia , Raios Ultravioleta , Animais , Células Cultivadas , Melanócitos/metabolismo , Melanoma/metabolismo , Camundongos
13.
J Therm Biol ; 68(Pt A): 128-138, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28689714

RESUMO

It is believed that the biological systems perceiving temperature and light daily cycles were subjected to the simultaneous selective pressures, which resulted in their co-evolutionary association. We investigated the influence of 1h 33°C heat shock on the expression of clock and heat shock protein genes, as well as the role of the thermo-TRP channel, TRPV1, in ZEM-2S cells of the teleost Danio rerio, in constant dark (DD) or light-dark cycles (LD). After heat shock, we observed an acute increase of hsp90 aa1 levels in both DD and LD conditions. Interestingly, the expression of hsp90 aa1 was two-fold lower in LD than in DD, what suggests an antagonistic effect of white light on heat shock action. Regarding clock genes, no effect was found in cells subjected to the heat shock in DD. When cells were kept in LD, the expression of per1, per2, cry1a, and cry1b increased in response to heat shock, indicating that heat shock only affects clock core of LD-synchronized ZEM-2S cells. We then evaluated whether TRPV1 played a role in heat-mediated hsp90 aa1 and per2 responses: hsp90 aa1 increase was unaffected whereas per2 increase was partially blocked by TRPV1 inhibitor, demonstrating the channel participation in clock gene regulation by heat shock. Taken together, our results open a novel investigative perspective regarding the relationship between temperature and clock genes, placing a new player in the regulation of this phenomenon: the TRPV1 channel.


Assuntos
Ritmo Circadiano/genética , Luz , Temperatura , Canais de Potencial de Receptor Transitório/fisiologia , Peixe-Zebra/fisiologia , Animais , Regulação da Expressão Gênica , Fotoperíodo , Peixe-Zebra/genética
14.
J Recept Signal Transduct Res ; 36(5): 435-44, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27305962

RESUMO

Aldosterone acts on its target tissue through a classical mechanism or through the rapid pathway through a putative membrane-bound receptor. Our goal here was to better understand the molecular and biochemical rapid mechanisms responsible for aldosterone-induced cardiomyocyte hypertrophy. We have evaluated the hypertrophic process through the levels of ANP, which was confirmed by the analysis of the superficial area of cardiomyocytes. Aldosterone increased the levels of ANP and the cellular area of the cardiomyocytes; spironolactone reduced the aldosterone-increased ANP level and cellular area of cardiomyocytes. Aldosterone or spironolactone alone did not increase the level of cyclic 3',5'-adenosine monophosphate (cAMP), but aldosterone plus spironolactone led to increased cAMP level; the treatment with aldosterone + spironolactone + BAPTA-AM reduced the levels of cAMP. These data suggest that aldosterone-induced cAMP increase is independent of mineralocorticoid receptor (MR) and dependent on Ca(2+). Next, we have evaluated the role of A-kinase anchor proteins (AKAP) in the aldosterone-induced hypertrophic response. We have found that St-Ht31 (AKAP inhibitor) reduced the increased level of ANP which was induced by aldosterone; in addition, we have found an increase on protein kinase C (PKC) and extracellular signal-regulated kinase 5 (ERK5) activity when cells were treated with aldosterone alone, spironolactone alone and with a combination of both. Our data suggest that PKC could be responsible for ERK5 aldosterone-induced phosphorylation. Our study suggests that the aldosterone through its rapid effects promotes a hypertrophic response in cardiomyocytes that is controlled by an AKAP, being dependent on ERK5 and PKC, but not on cAMP/cAMP-dependent protein kinase signaling pathways. Lastly, we provide evidence that the targeting of AKAPs could be relevant in patients with aldosterone-induced cardiac hypertrophy and heart failure.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Aldosterona/administração & dosagem , Insuficiência Cardíaca/tratamento farmacológico , Hipertrofia/tratamento farmacológico , Receptores de Mineralocorticoides/biossíntese , Proteínas de Ancoragem à Quinase A/genética , Animais , Fator Natriurético Atrial/biossíntese , Fator Natriurético Atrial/metabolismo , AMP Cíclico/metabolismo , Ácido Egtázico/administração & dosagem , Ácido Egtázico/análogos & derivados , Insuficiência Cardíaca/metabolismo , Humanos , Hipertrofia/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/biossíntese , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação , Cultura Primária de Células , Proteína Quinase C/biossíntese , Ratos , Receptores de Mineralocorticoides/genética , Transdução de Sinais/efeitos dos fármacos , Espironolactona/administração & dosagem
15.
Mol Cell Biochem ; 421(1-2): 29-39, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27535239

RESUMO

Melanin production within melanocytes is regulated, among others, by estradiol, whose effects on melanogenesis are still not completely elucidated. Here we show that although 10(-7) M 17ß-estradiol (E2) increased tyrosinase mRNA levels in B16-F10 malignant melanocytes, there was a transient decrease and abolishment of the temporal variation of melanin content. Both parameters were much higher in the malignant than in normal Melan-a cells. Considering that silencing clock machinery in human melanocytes increases melanogenesis, we investigated clock gene expression in those cell lines. Except for Melan-a Bmal1 and B16-F10 Per2 expression of control cells, Per1, Per2, and Bmal1 expression increased independently of cell type or E2 treatment after 24 h. However, melanoma cells showed a marked increase in Per1 and Bma11 expression in response to E2 at the same time points, what may rule out E2 as a synchronizer agent since the expression of those genes were not in antiphase. Next, we investigated the expression of Xpa, a clock-controlled gene, which in Melan-a cells, peaked at 18 h, and E2 treatment shifted this peak to 24 h, whereas B16-F10 Xpa expression peaked at 24 h in both control and E2 group, and it was higher compared to Melan-a cells in both groups. Therefore, malignant and normal melanocytes display profound differences on core elements of the local clock, and how they respond to E2, what is most probably determinant of the differences seen on melanin synthesis and Tyrosinase and Xpa expression. Understanding these processes at the molecular level could bring new strategies to treat melanoma.


Assuntos
Proteínas CLOCK/biossíntese , Estradiol/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Melaninas/biossíntese , Melanócitos/metabolismo , Melanoma/metabolismo , Proteínas de Neoplasias/biossíntese , Linhagem Celular Tumoral , Humanos , Melanócitos/patologia , Melanoma/patologia
16.
17.
Biochim Biophys Acta ; 1845(2): 232-47, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24491449

RESUMO

Malignant Mesothelioma (MM) is a very aggressive cancer with low survival rates and often diagnosed at an advanced stage. Several players have been implicated in the development of this cancer, such as asbestos, erionite and the simian virus 40 (SV40). Here, we have reviewed the involvement of erionite, SV40, as well as, the role of several genes (p16(INK4a), p14(ARF), NF2, LATS2, SAV, CTNNB1 and among others), the pathways (RAS, PI3K, Wnt, BCL and Hippo), and their respective roles in the development of MM.


Assuntos
Carcinogênese/genética , Neoplasias Pulmonares/genética , Mesotelioma/genética , Transdução de Sinais/genética , Amianto/toxicidade , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Humanos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/patologia , Mesotelioma/etiologia , Mesotelioma/patologia , Mesotelioma Maligno , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Vírus 40 dos Símios/patogenicidade , Zeolitas/toxicidade
18.
Biochem Cell Biol ; 93(1): 83-93, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25488178

RESUMO

Mineralocorticoid receptor (MR) antagonists of aldosterone (spironolactone and eplerenone) display beneficial effects in the treatment of cardiopathies; however, many of these responses are independent of this antagonism. The mechanisms of action of these drugs are not well known; few studies have comparatively evaluated whether eplerenone as well as spironolactone display cardioprotective effects independent of the blockade of aldosterone. To study these mechanisms, which lead to cardioprotective responses, and to evaluate comparatively their effects in vitro, we have evaluated the proliferative effect of spironolactone and eplerenone in primary culture of cardiomyocytes and fibroblasts of neonatal Wistar rats in the presence and absence of aldosterone. Spironolactone and eplerenone promoted proliferation of cardiomyocyte even in the absence of aldosterone, suggesting a signaling pathway independent of the antagonism over aldosterone. Spironolactone was able to reduce the proliferation of fibroblasts and to reverse the proliferation promoted by aldosterone, which was also displayed by eplerenone. To elucidate the biochemical pathways evoked by these drugs, we sought to analyze Ca(2+), cAMP, and cGMP, and the activity of PKC and ERK1/2. Spironolactone and eplerenone increased the levels of Ca(2+), cGMP and activity of ERK 1/2, and reversed the action of aldosterone on the activity of PKC and ERK1/2. Interestingly, only spironolactone increased the levels of cAMP. Our data support the fact that in addition to aldosterone, both spironolactone and eplerenone display rapid responses (non-genomic) such as an increase on cAMP, Ca(2+), and cGMP by spironolactone, and Ca(2+) and cGMP by eplerenone. We have observed a more consistent cardioprotection promoted by spironolactone; however, these effects have yet to be tested clinically. Therefore, our data show that these drugs do not only act as an antagonist of MR, but could lead to a new pharmacological classification of these drugs.


Assuntos
Aldosterona/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Espironolactona/análogos & derivados , Espironolactona/farmacologia , Animais , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Eplerenona , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
19.
Tumour Biol ; 35(2): 889-901, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24081673

RESUMO

The malignant mesothelioma is an aggressive form of cancer with a mean survival rate of less than a year. Moreover, environmental exposure to minerals is an important factor in the development of malignant mesothelioma (MM), especially the mineral asbestos, which has a well-documented role in MM, and more recently, the mineral erionite has been proven to be a strong carcinogenic inducer of MM. In addition, the virus simian virus 40 has been implicated as a co-carcinogenic player in MM. However, the molecular mechanisms involved in the pathogenesis of this cancer are still not fully understood. Indeed, it is known that several genes are altered or mutated in MM, among those are p16(INK4A), p14(ARF), and neurofibromatosis type II. Furthermore, TP53 has been reported to be mutated in the majority of the cancers; however, in MM, it is very uncommon mutations in this gene. Also, the PTEN gene has been shown to play an important role in endometrial cancer and glioblastoma, although the role of PTEN in MM has yet to be established. Taken altogether, this review focuses on the historical aspects, molecular mechanisms, interaction with other genes and proteins, and the role of these genes in MM. Lastly, this review questions the cancer theory of the two hits because the functions of both PTEN and TP53 are not fully explained by this theory.


Assuntos
Amianto/toxicidade , Neoplasias Pulmonares/genética , Proteínas de Membrana/genética , Mesotelioma/genética , PTEN Fosfo-Hidrolase/genética , Proteína Supressora de Tumor p53/genética , Carcinógenos/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/virologia , Proteínas de Membrana/metabolismo , Mesotelioma/induzido quimicamente , Mesotelioma/patologia , Mesotelioma/virologia , Mesotelioma Maligno , PTEN Fosfo-Hidrolase/metabolismo , Vírus 40 dos Símios/patogenicidade , Proteína Supressora de Tumor p53/metabolismo
20.
Cells ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38920666

RESUMO

Thyroid hormones, thyroxin (T4) and the biologically active triiodothyronine (T3), play important roles in liver metabolic regulation, including fatty acid biosynthesis, beta-oxidation, and cholesterol homeostasis. These functions position TH signaling as a potential target for the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Elevated T3 levels in the circulation are associated with increased hepatic lipid turnover, which is also under the control of the circadian clock system. In this study, we developed a cell system to study the impact of hepatocyte circadian rhythms on the metabolic response to T3 treatment under control and steatotic conditions. Synchronized AML-12 circadian reporter hepatocytes were treated with T3 at different circadian phases and metabolic conditions. T3 treatment increased metabolic activity in a dose-independent fashion and had no significant effect on circadian rhythms in AML-12 cells. T3 had marked time-of-treatment-dependent effects on metabolic transcript expression. Steatosis induction altered metabolic transcript expression in AML-12 cells. In this condition, the circadian rhythm period was lengthened, and this effect was independent of T3. Under steatotic conditions, T3 had marked time-of-treatment dependent effects on metabolic transcript expression, which differed from those observed under control conditions. These findings reveal a time-of-day-dependent response of hepatocytes to T3, which is further modulated by the metabolic state. Our data suggest that time has a strong influence on liver TH action, which might be considered when treating MASLD.


Assuntos
Ritmo Circadiano , Hepatócitos , Tri-Iodotironina , Hepatócitos/metabolismo , Animais , Tri-Iodotironina/farmacologia , Tri-Iodotironina/metabolismo , Camundongos , Hormônios Tireóideos/metabolismo , Linhagem Celular , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Relógios Circadianos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA