Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Toxicol Environ Health A ; 78(19): 1189-200, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26436995

RESUMO

Since the cyanotoxin saxitoxin (STX) is a neurotoxin and induces ecological changes in aquatic environments, a potential risk to public and environmental health exists. However, data on STX-mediated cytotoxic and genotoxic effects are still scare. In order to gain a better understanding of the effects of this toxin, the cytotoxic and genotoxic potential of STX was examined in two mammalian cell lines. Neuro 2A (N2A), a neuroblastoma mouse cell line, and Vero cell line, derived from Vero green monkey kidney cells, were exposed to several concentrations of STX ranging from 0.5 to 64 nM to determine cell viability, induction of apoptosis (DNA fragmentation assay), and formation of micronuclei (MN) (cytokinesis-block micronucleus assay; CBMN) following 24 h of incubation. The half maximal effective concentration (EC50) values for STX calculated in cell viability tests were 1.01 nM for N2A and 0.82 nM for Vero cells. With increasing STX concentration there was evidence of DNA fragmentation indicating apoptosis induction in Vero cells with a 50% increase in DNA fragmentation compared to control at the highest STX concentration tested (3 nM). The results demonstrated no significant changes in the frequency of micronucleated binucleated cells in N2A and Vero cells exposed to STX, indicating the absence of genotoxicity under these test conditions. There was no apparent cellular necrosis as evidenced by a lack of formation of multinucleated cells. In conclusion, data reported herein demonstrate that STX produced death of both cell types tested through an apoptotic process.


Assuntos
Morte Celular/efeitos dos fármacos , Saxitoxina/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eletroforese em Gel de Ágar , Técnicas In Vitro , Camundongos , Testes para Micronúcleos , Células Vero/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA