Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Evol Appl ; 15(4): 679-693, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35505878

RESUMO

Tambaqui or cachama (Colossoma macropomum) is one of the most important neotropical freshwater fish used for aquaculture in South America, and its production is concentrated at low latitudes (close to the Equator, 0°), where the water temperature is warm. Therefore, understanding how selection shapes genetic variations and structure in farmed populations is of paramount importance in evolutionary biology. High-throughput sequencing to generate genome-wide data for fish species allows for elucidating the genomic basis of adaptation to local or farmed conditions and uncovering genes that control the phenotypes of interest. The present study aimed to detect genomic selection signatures and analyze the genetic variability in farmed populations of tambaqui in South America using single-nucleotide polymorphism (SNP) markers obtained with double-digest restriction site-associated DNA sequencing. Initially, 199 samples of tambaqui farmed populations from different locations (located in Brazil, Colombia, and Peru), a wild population (Amazon River, Brazil), and the base population of a breeding program (Aquaculture Center, CAUNESP, Jaboticabal, SP, Brazil) were genotyped. Observed and expected heterozygosity was 0.231-0.350 and 0.288-0.360, respectively. Significant genetic differentiation was observed using global FST analyses of SNP loci (FST = 0.064, p < 0.050). Farmed populations from Colombia and Peru that differentiated from the Brazilian populations formed distinct groups. Several regions, particularly those harboring the genes of significance to aquaculture, were identified to be under positive selection, suggesting local adaptation to stress under different farming conditions and management practices. Studies aimed at improving the knowledge of genomics of tambaqui farmed populations are essential for aquaculture to gain deeper insights into the evolutionary history of these fish and provide resources for the establishment of breeding programs.

2.
Front Genet ; 11: 604, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582300

RESUMO

Pacu (Piaractus mesopotamicus) is a Neotropical fish of major importance for South American aquaculture. Septicemia caused by Aeromonas hydrophila bacteria is currently considered a substantial threat for pacu aquaculture that have provoked infectious disease outbreaks with high economic losses. The understanding of molecular aspects on progress of A. hydrophila infection and pacu immune response is scarce, which have limited the development of genomic selection for resistance to this infection. The present study aimed to generate information on transcriptome of pacu in face of A. hydrophila infection, and compare the transcriptomic responses between two groups of time-series belonging to a disease resistance challenge, peak mortality (HM) and mortality plateau (PM) groups of individuals. Nine RNA sequencing (RNA-Seq) libraries were prepared from liver tissue of challenged individuals, generating ∼160 million 150 bp pair-end reads. After quality trimming/cleanup, these reads were assembled de novo generating 211,259 contigs. When the expression of genes from individuals of HM group were compared to individuals from control group, a total of 4,413 differentially expressed transcripts were found (2,000 upregulated and 2,413 downregulated candidate genes). Additionally, 433 transcripts were differentially expressed when individuals from MP group were compared with those in the control group (155 upregulated and 278 downregulated candidate genes). The resulting differentially expressed transcripts were clustered into the following functional categories: cytokines and signaling, epithelial protection, antigen processing and presentation, apoptosis, phagocytosis, complement system cascades and pattern recognition receptors. The proposed results revealing relevant differential gene expression on HM and PM groups which will contribute to a better understanding of the molecular defense mechanisms during A. hydrophila infection.

3.
Front Genet ; 9: 46, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29520294

RESUMO

The pirapitinga, Piaractus brachypomus (Characiformes, Serrasalmidae), is a fish from the Amazon basin and is considered to be one of the main native species used in aquaculture production in South America. The objectives of this study were: (1) to perform liver transcriptome sequencing of pirapitinga through NGS and then validate a set of microsatellite markers for this species; and (2) to use polymorphic microsatellites for analysis of genetic variability in farmed stocks. The transcriptome sequencing was carried out through the Roche/454 technology, which resulted in 3,696 non-redundant contigs. Of this total, 2,568 contigs had similarity in the non-redundant (nr) protein database (Genbank) and 2,075 sequences were characterized in the categories of Gene Ontology (GO). After the validation process of 30 microsatellite loci, eight markers showed polymorphism. The analysis of these polymorphic markers in farmed stocks revealed that fish farms from North Brazil had a higher genetic diversity than fish farms from Southeast Brazil. AMOVA demonstrated that the highest proportion of variation was presented within the populations. However, when comparing different groups (1: Wild; 2: North fish farms; 3: Southeast fish farms), a considerable variation between the groups was observed. The FST values showed the occurrence of genetic structure among the broodstocks from different regions of Brazil. The transcriptome sequencing in pirapitinga provided important genetic resources for biological studies in this non-model species, and microsatellite data can be used as the framework for the genetic management of breeding stocks in Brazil, which might provide a basis for a genetic pre-breeding programme.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA