Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Food Technol Biotechnol ; 60(3): 338-349, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36320358

RESUMO

Research background: This study aims to monitor the growth of the methylotrophic bacteria Methylobacterium organophilum in a culture medium with methanol as a carbon source and to verify the production of unicellular proteins and other biomolecules, such as carotenoids, exopolysaccharides and polyhydroxyalkanoates, making them more attractive as animal feed. Experimental approach: Bacterial growth was studied in shake flasks using different carbon/nitrogen (C:N) ratios to determine their best ratio for achieving the highest volumetric productivity of cells and substrate consumption rate. This optimal parameter was further used in a fed-batch operating bioreactor system to define the kinetic profile of cell growth. Methanol consumption was measured by HPLC analysis and the extracted pigments were analyzed by liquid chromatography/mass spectrometry. Chemical composition and rheological properties of the produced exopolysaccharides were also determined. Results and conclusions: The best experimental parameters were verified using an initial methanol concentration of 7 g/L in the culture medium. The same initial substrate concentration was used in the fed-batch operation and after 60 h of cultivation 5 g/L of biomass were obtained. The accumulation of carotenoids associated with cell growth was monitored, reaching a concentration of 1.6 mg/L at the end of the process. These pigments were then analyzed and characterized as a set of xanthophylls (oxidized carotenoids). In addition, two other product types were identified during the fed-batch operation: exopolysaccharides, which reached a concentration of 8.9 g/L at the end of the cultivation, and an intracellular granular structure that was detected by transmission electron microscopy (TEM), suggesting the accumulation of polyhydroxyalkanoate (PHA), most likely polyhydroxybutyrate. Novelty and scientific contribution: Methylobacterium organophilum demonstrated a unique ability to produce compounds of commercial interest. The distinct metabolic diversity of this bacterium makes room for its use in biorefineries.

2.
World J Microbiol Biotechnol ; 38(10): 169, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35882683

RESUMO

Despite hydrolytic exoenzymes and biosurfactants having been gradually reported from the poriferan microbiome, little is known about these bioproducts in microorganisms inhabiting Homoscleromorpha sponges. Here, we investigated the production of hydrolases and biosurfactants in bacteria isolated from three shallow-water homoscleromorph species, Oscarella sp., Plakina cyanorosea, and Plakina cabofriense. A total of 99 of 107 sponge-associated bacterial isolates exhibited activity for at least one of the analyzed hydrolases. Following fermentation in Luria-Bertani (LB) and Tryptic Soy Broth (TSB), two isolates, 80BH11 and 80B1:1010b, showed higher lipase and peptidase activities. Both of them belonged to the Bacillus genus and were isolated from Oscarella. Central composite design leveraged up the peptidase activity in 280% by Bacillus sp. 80BH11 in the TSB medium for 48 h at 30 °C. The optimized model also revealed that pH 6.5 and 45 °C were the best conditions for peptidase reaction. In addition, Bacillus sp. 80BH11 was able to release highly emulsifying and remarkably stable surfactants in the LB medium. Surfactin was finally elucidated as the biosurfactant generated by this sponge-derived Bacillus. In conclusion, we hope to have set the scenery for further prospecting of industrial enzymes and biosurfactants in Homoscleromorpha microbiomes.


Assuntos
Bacillus , Poríferos , Animais , Bactérias , Peptídeo Hidrolases , Tensoativos/química
3.
Enzyme Microb Technol ; 164: 110173, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36529062

RESUMO

The influence of different carbon sources (glucose (G), olive oil (O), and a combination of both (GO)) in the physiology (biomass and lipase production) and morphology (light and environmental and scanning electron microscopy) of the fungus Penicillium simplicissimum by applying submerged (SmF) and solid-state (SSF) fermentations was investigated. The cultivation was carried out using polypropylene as hydrophobic inert support in SmF and SSF to understand better the influence of a support for the fungus growth and also provides the immobilization of lipases during its production. Micrographs show different morphologies: in SSF, the fungus grows on and inside the inert support independent of the media; in SmF, the formation of high-density spherical pellets obtained in medium GO leads to the best productivity and specific product yield Yp/x..Conidiation is observed mainly in SSF, a few in SmF with polypropylene as inert support and not in SmF, which may indicate a stress condition in SSF. Possibly, the morphology acquired by the fungus under stressful conditions may be the key to the higher biomass and lipase productivity at SSF. The developed process with simultaneous production and immobilization of lipase leads to a new promissory biocatalyst once it can be directly applied with no need for downstream processes.


Assuntos
Lipase , Penicillium , Lipase/metabolismo , Polipropilenos , Fermentação , Fungos/metabolismo
4.
Biotechnol J ; 4(10): 1450-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19606429

RESUMO

A comparative study of Penicillium simplicissimum morphology and lipase production was performed using solid-state (SSF) and submerged (SmF) fermentation. SSF was carried out on babassu cake as culture medium and SmF on a semi-synthetic medium and a medium based on suspended babassu cake grains. Yield of product on biomass, specific activity and conidia production were 3.3-, 1.3- and 2-fold higher in SSF. In SmF, the type of fungus growth differed according to the medium. Using the semi-synthetic medium, the fungus formed densely interwoven mycelial masses without conidia production, whereas using the babassu-based medium the fungus formed free mycelia and adhered to the surfaces of the grains, producing conidia. The results show that babassu cake induces conidiation in SmF. In SSF, the fungus not only grew on the surface of the grains, producing conidia abundantly, but also effectively colonized and penetrated the babassu particles. The high conidia production and lipase productivity in SSF may be related to the low availability of nutrients or to other stimuli associated with this type of fermentation. Thus, the high production of the thermostable P. simplicissimum lipase, using a non-supplemented, low-cost agro-industrial residue as the culture medium, demonstrates the biotechnological potential of SSF for the production of industrial enzymes.


Assuntos
Biotecnologia/métodos , Fermentação/fisiologia , Lipase/metabolismo , Penicillium/enzimologia , Meios de Cultura , Microbiologia Industrial/métodos , Penicillium/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA