Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Amino Acids ; 56(1): 25, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512589

RESUMO

Nowadays, a healthier and more sustainable lifestyle is the subject of much research. One example is the use of crossover trials to investigate the uptake of proteins, usually from alternatives to animal-based sources, by healthy volunteers. The data analysis is complex and requires many decisions on the part of the scientists involved. Such a process can be streamlined and made more objective and reproducible through bespoke software. This paper describes such a software package, aaresponse , for the R environment, available as open source. It features ample visualization functions, supports consistent curation strategies, and compares amino acid uptake of different protein meals (interventions) through the use of mixed models analysing parameters of interest like the area under the curve (AUC). The defining feature is the use of parametric curves to fit the amino acid levels over time, increasing the robustness of the approach and allowing for more strict quality control strategies.


Assuntos
Aminoácidos , Software , Humanos , Estudos Cross-Over
2.
BMC Immunol ; 22(1): 27, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849432

RESUMO

BACKGROUND: Food proteins differ in their allergenic potential. Currently, there is no predictive and validated bio-assay to evaluate the allergenicity of novel food proteins. The objective of this study was to investigate the potential of a human peripheral blood mononuclear cell (PBMC) gene expression assay to identify biomarkers to predict the allergenicity of legume proteins. RESULTS: PBMCs from healthy donors were exposed to weakly and strongly allergenic legume proteins (2S albumins, and 7S and 11S globulins from white bean, soybean, peanut, pea and lupine) in three experiments. Possible biomarkers for allergenicity were investigated by exposing PBMCs to a protein pair of weakly (white bean) and strongly allergenic (soybean) 7S globulins in a pilot experiment. Gene expression was measured by RNA-sequencing and differentially expressed genes were selected as biomarkers. 153 genes were identified as having significantly different expression levels to the 7S globulin of white bean compared to soybean. Inclusion of multiple protein pairs from 2S albumins (lupine and peanut) and 7S globulins (white bean and soybean) in a larger study, led to the selection of CCL2, CCL7, and RASD2 as biomarkers to distinguish weakly from strongly allergenic proteins. The relevance of these three biomarkers was confirmed by qPCR when PBMCs were exposed to a larger panel of weakly and strongly allergenic legume proteins (2S albumins, and 7S and 11S globulins from white bean, soybean, peanut, pea and lupine). CONCLUSIONS: The PBMC gene expression assay can potentially distinguish weakly from strongly allergenic legume proteins within a protein family, though it will be challenging to develop a generic method for all protein families from plant and animal sources. Graded responses within a protein family might be of more value in allergenicity prediction instead of a yes or no classification.


Assuntos
Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Hipersensibilidade Alimentar/imunologia , Proteínas de Ligação ao GTP/metabolismo , Leucócitos Mononucleares/fisiologia , Albuminas 2S de Plantas/imunologia , Alérgenos/imunologia , Antígenos de Plantas/imunologia , Biomarcadores/metabolismo , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL7/genética , Fabaceae/imunologia , Proteínas de Ligação ao GTP/genética , Globulinas/imunologia , Humanos , Imunoglobulina E/metabolismo , Proteínas de Armazenamento de Sementes/imunologia , Análise de Sequência de RNA , Índice de Gravidade de Doença , Proteínas de Soja/imunologia , Transcriptoma
3.
Front Allergy ; 4: 1115022, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007648

RESUMO

Background: Food allergy to peanut and soybean, both legumes, is highly prevalent. The consumption of other legumes and legume protein isolates, some of which may be considered novel foods, is increasing. This may lead to an increase in sensitization and allergy and may pose a risk for legume-allergic (e.g. peanut and soybean) patients due to cross-reactivity. Objective: This study investigated the frequency of co-sensitization and co-allergy between legumes and the role of different protein families. Methods: Six legume-allergic patient groups were included: peanut (n = 30), soybean (n = 30), lupine (n = 30), green pea (n = 30), lentil (n = 17), bean (n = 9). IgE binding to total extracts, protein fractions (7S/11S globulin, 2S albumin, albumin), and 16 individual proteins from 10 legumes (black lentil, blue lupine, chickpea, faba bean, green lentil, pea, peanut, soybean, white bean, and white lupine) was measured by line blot. Results: Co-sensitization varied from 36.7% to 100%. Mono-sensitization was only found in soybean (16.7%), peanut (10%), and green pea-allergic (3.3%) patients. A high frequency of co-sensitization between the 7S/11S globulin fractions of all 10 legumes and individual 7S and 11S globulins was observed. In peanut and soybean-allergic patients, co-allergies for other legumes were uncommon (≤16,7%), while in green pea, lupine, lentil, and bean-allergic patients co-allergy for peanut (64.7%-77.8%) or soybean (50%-64.7%) was frequently seen. Conclusion: Co-sensitization between legumes was high, but generally not clinically relevant. Co-allergy to other legumes was not often seen in peanut- and soybean allergic patients. The 7S and 11S globulins were likely responsible for the observed co-sensitization.

4.
Mol Nutr Food Res ; 65(6): e2000712, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33434390

RESUMO

SCOPE: No accepted and validated methods are currently available which can accurately predict protein allergenicity. In this study, the role of digestion and transport on protein allergenicity is investigated. METHODS AND RESULTS: Peanut allergens (Ara h 1, 2, 3, and 6) and a milk allergen (ß-lactoglobulin) are transported across pig intestinal epithelium using the InTESTine model and afterward basophil activation is measured to assess the (remaining) functional properties. Additionally, allergens are digested by pepsin prior to epithelial transport and their allergenicity is assessed in a human mast cell activation assay. Remarkably, transported Ara h 1 and 3 are not able to activate basophils, in contrast to Ara h 2 and 6. Digestion prior to transport results in a significant increase in mast cell activation of Ara h 1 and 3 dependent on the length of digestion time. Activation of mast cells by Ara h 2 and 6 is unaffected by digestion prior to transport. CONCLUSIONS: Digestion and transport influences the allergenicity of Ara h 1 and 3, but not of Ara h 2 and 6. The influence of digestion and transport on protein allergenicity may explain why current in vitro assays are not predictive for allergenicity.


Assuntos
Albuminas 2S de Plantas/toxicidade , Antígenos de Plantas/toxicidade , Mucosa Intestinal/metabolismo , Proteínas de Membrana/toxicidade , Proteínas de Plantas/toxicidade , Proteínas de Armazenamento de Sementes/toxicidade , Albuminas 2S de Plantas/farmacocinética , Adulto , Animais , Basófilos/efeitos dos fármacos , Transporte Biológico , Digestão/efeitos dos fármacos , Feminino , Humanos , Mucosa Intestinal/efeitos dos fármacos , Lactoglobulinas/farmacocinética , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Proteínas de Membrana/farmacocinética , Pessoa de Meia-Idade , Proteínas de Plantas/farmacocinética , Proteínas de Armazenamento de Sementes/farmacocinética , Suínos
5.
Toxicol Rep ; 8: 767-773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854954

RESUMO

Predicting the allergenicity of novel proteins is challenging due to the absence of validated predictive methods and a well-defined reference set of proteins. The prevalence of sensitization could be a parameter to select reference proteins to characterize allergenic proteins. This study investigated whether the prevalence of sensitization of legume extracts and proteins can indeed be used for this purpose. A random sample of suspected food-allergic patients (n=106) was therefore selected. 10 extracts (processed and non-processed) and 18 individual proteins (2S albumins, 7S and 11S globulins) from black lentil, blue and white lupine, chickpea, faba bean, green lentil, pea, peanut, soybean, and white bean were isolated and the prevalence of sensitization and the intensity of IgE binding were evaluated. The prevalence of sensitization ranged from 5.7 % (faba bean and green lentil) to 14.2 % (peanut). The prevalence of sensitization for individual legume proteins ranged from 0.0 % for albumin 1 (pea) to 15.1 %-17.9 % for Ara h 1, 2, 3, and 6 (peanut). The prevalence of sensitization correlated strongly with the intensity of IgE binding for individual proteins (p < 0.05, ρ = 0.894), for extracts no correlation was found. The discovered ranking can be used to select reference proteins for the development and validation of predictive in vitro or in vivo assays for the assessment of the sensitizing potential.

6.
Nutr Res ; 36(8): 798-807, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27440534

RESUMO

It is hypothesized that the digestible indispensable amino acid score (DIAAS) can be determined based on dynamic in vitro gastrointestinal digestion experiments as replacement for invasive animal studies. We determined the in vitro DIAAS for immature herring eggs (roe) proteins in comparison with reference proteins. The true ileal digestibility of protein and indispensable amino acids (IAA) was measured under human conditions simulated in a gastrointestinal model (tiny-TIM). The in vitro true ileal digestibility of ovalbumin, cooked and raw chicken egg white, and casein was similar to that found in humans (r(2) = 0.96), providing a casual observation to support the validity of tiny-TIM. The digestibility of the immature herring egg proteins was 71% to 92%. The highest IAA digestibility was found for immature whole herring egg protein (55%-80%) in comparison to immature herring egg membrane and immature de-membraned herring protein (50%-70%). The DIAAS as recommended by FAO for children and adults, but measured in vitro, were 91% for immature whole herring egg protein (lysine first limiting), 71% for immature herring egg membrane protein (histidine first limiting), and 88% for immature herring egg de-membraned protein (sulfur AA first limiting). True ileal protein and amino acid digestibility can be determined in a dynamic gastrointestinal model, such as tiny-TIM, which can be used for estimating the DIAAS. Immature herring egg proteins, a previously underutilized resource, were determined to be an important and valuable source of IAA for human consumption.


Assuntos
Aminoácidos/análise , Digestão , Proteínas Dietéticas do Ovo/metabolismo , Proteínas de Peixes/metabolismo , Peixes , Trato Gastrointestinal/metabolismo , Aminoácidos/metabolismo , Animais , Proteínas Dietéticas do Ovo/química , Proteínas de Peixes/química , Humanos , Íleo/metabolismo , Modelos Biológicos
7.
J Agric Food Chem ; 63(6): 1849-55, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25651402

RESUMO

Six commercial peanut enzyme-linked immunosorbent assay kits were assessed for their ability to recover peanut from the standard reference material 2387 peanut butter and also for their specificity in detecting four major peanut allergens, Ara h 1, Ara h 2, Ara h 3, and Ara h 6. The percentage recovery of peanut from peanut butter differed across different kits as well as at different sample concentrations. The highest recovery was observed with the Romer and R-Biopharm kits, while four other kits were found to underestimate the protein content of the reference peanut butter samples. Five of the kits were most sensitive in detecting Ara h 3 followed by Ara h 1, while hardly recognizing Ara h 2 and Ara h 6. The other kit showed the highest sensitivity to Ara h 2 and Ara h 6, while Ara h 1 and Ara h 3 were poorly recognized. Although Ara h 2 and Ara h 6 are known to be heat stable and more potent allergens, antisera specific to any of these four peanut proteins/allergens may serve as good markers for the detection of peanut residues.


Assuntos
Alérgenos/análise , Arachis/imunologia , Ensaio de Imunoadsorção Enzimática/estatística & dados numéricos , Albuminas 2S de Plantas/análise , Antígenos de Plantas/análise , Ensaio de Imunoadsorção Enzimática/métodos , Reações Falso-Negativas , Glicoproteínas/análise , Proteínas de Membrana , Proteínas de Plantas/análise , Sensibilidade e Especificidade
8.
J Agric Food Chem ; 61(31): 7636-44, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23822864

RESUMO

Aim of this study was to investigate the digestion of transglutaminase cross-linked caseinate (XLC) versus native caseinate (NC) in solution and in cheese spread under digestive conditions for adults and children mimicked in a gastrointestinal model. Samples were collected for gel electrophoresis and nitrogen analysis. The results showed no relevant differences between XLC and NC for total and α-amino nitrogen in digested fraction under adult and child conditions. However, the rate of digestion was depending on the food matrix. Gel electrophoresis showed the gastric breakdown of XLC without formation of pepsin resistant peptides larger than 4 kDa. NC was slowly digested in the stomach with formation of pepsin resistant fragments and was still detectable in the stomach after 90 min. In the small intestine the proteins were rapidly digested. XLC was digested to small peptides, while NC was resistant against pepsin digestion under gastric conditions of adults and children.


Assuntos
Caseínas/metabolismo , Digestão , Trato Gastrointestinal/enzimologia , Transglutaminases/metabolismo , Adulto , Caseínas/química , Trato Gastrointestinal/metabolismo , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA