Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Virol ; 86(4): 585-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24105757

RESUMO

The 2011-2012 and 2012-2013 post-pandemic influenza outbreaks were characterized by variability in the A(H3N2) influenza viruses, resulting in low to moderate vaccine effectiveness (VE). The aim of this study was to investigate the molecular evolution and vaccine strain match of the A(H3N2) influenza viruses, having been circulated throughout the population of the French Corsica Island in 2011-2012 and again in 2012-2013. Clinical samples from 31 patients with confirmed A(H3N2) influenza viruses were collected by general practitioners (GPs) over these two consecutive seasons. An analysis of genetic distance and antigenic drift was conducted. Based on a hemagglutinin (HA) aminoacid sequence analysis, the Corsican A(H3N2) viruses fell into the A/Victoria/208/2009 genetic clade, group 3. All influenza viruses were characterized by at least four fixed amino acid mutations which were: N145S (epitope A); Q156H and V186G (epitope B) Y219S (epitope D), with respect to the A/Perth/16/2009 (reference vaccine strain for the 2011-2012) and the A/Victoria/361/2011 (reference vaccine strain for the 2012-2013). Using the p(epitope) model, the percentages of the perfect match VE estimated against circulated strains declined within and between seasons, with estimations of <50%. Overall, these results seem to indicate an antigenic drift of the A(H3N2) influenza viruses which were circulated in Corsica. These findings highlight the importance of the continuous and careful surveillance of genetic changes in the HA domain during seasonal influenza epidemics, in order to provide information on newly emerging genetic variants.


Assuntos
Variação Antigênica/genética , Deriva Genética , Hemaglutininas Virais/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/epidemiologia , Adolescente , Adulto , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Sequência de Bases , Criança , Pré-Escolar , Surtos de Doenças , Feminino , França/epidemiologia , Humanos , Vacinas contra Influenza , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Estações do Ano , Análise de Sequência de DNA , Adulto Jovem
2.
Science ; 378(6623): eadd8737, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454863

RESUMO

The geographic and evolutionary origins of the SARS-CoV-2 Omicron variant (BA.1), which was first detected mid-November 2021 in Southern Africa, remain unknown. We tested 13,097 COVID-19 patients sampled between mid-2021 to early 2022 from 22 African countries for BA.1 by real-time RT-PCR. By November-December 2021, BA.1 had replaced the Delta variant in all African sub-regions following a South-North gradient, with a peak Rt of 4.1. Polymerase chain reaction and near-full genome sequencing data revealed genetically diverse Omicron ancestors already existed across Africa by August 2021. Mutations, altering viral tropism, replication and immune escape, gradually accumulated in the spike gene. Omicron ancestors were therefore present in several African countries months before Omicron dominated transmission. These data also indicate that travel bans are ineffective in the face of undetected and widespread infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA