Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS Genet ; 16(5): e1008681, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32463832

RESUMO

A large fraction of plant genomes is composed of transposable elements (TE), which provide a potential source of novel genes through "domestication"-the process whereby the proteins encoded by TE diverge in sequence, lose their ability to catalyse transposition and instead acquire novel functions for their hosts. In Arabidopsis, ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN 1 (ALP1) arose by domestication of the nuclease component of Harbinger class TE and acquired a new function as a component of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a histone H3K27me3 methyltransferase involved in regulation of host genes and in some cases TE. It was not clear how ALP1 associated with PRC2, nor what the functional consequence was. Here, we identify ALP2 genetically as a suppressor of Polycomb-group (PcG) mutant phenotypes and show that it arose from the second, DNA binding component of Harbinger transposases. Molecular analysis of PcG compromised backgrounds reveals that ALP genes oppose silencing and H3K27me3 deposition at key PcG target genes. Proteomic analysis reveals that ALP1 and ALP2 are components of a variant PRC2 complex that contains the four core components but lacks plant-specific accessory components such as the H3K27me3 reader LIKE HETEROCHROMATION PROTEIN 1 (LHP1). We show that the N-terminus of ALP2 interacts directly with ALP1, whereas the C-terminus of ALP2 interacts with MULTICOPY SUPPRESSOR OF IRA1 (MSI1), a core component of PRC2. Proteomic analysis reveals that in alp2 mutant backgrounds ALP1 protein no longer associates with PRC2, consistent with a role for ALP2 in recruitment of ALP1. We suggest that the propensity of Harbinger TE to insert in gene-rich regions of the genome, together with the modular two component nature of their transposases, has predisposed them for domestication and incorporation into chromatin modifying complexes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Proteínas do Grupo Polycomb/metabolismo , Proteínas Repressoras/metabolismo , Transposases/fisiologia , Animais , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Domínio Catalítico/genética , Células Cultivadas , Domesticação , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb/genética , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Células Sf9 , Spodoptera , Transposases/genética
2.
J Exp Bot ; 73(8): 2385-2402, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045165

RESUMO

Polycomb group (PcG) protein-mediated histone methylation (H3K27me3) controls the correct spatiotemporal expression of numerous developmental regulators in Arabidopsis. Epigenetic silencing of the stem cell factor gene WUSCHEL (WUS) in floral meristems (FMs) depends on H3K27me3 deposition by PcG proteins. However, the role of H3K27me3 in silencing of other meristematic regulator and pluripotency genes during FM determinacy has not yet been studied. To this end, we report the genome-wide dynamics of H3K27me3 levels during FM arrest and the consequences of strongly depleted PcG activity on early flower morphogenesis including enlarged and indeterminate FMs. Strong depletion of H3K27me3 levels results in misexpression of the FM identity gene AGL24, which partially causes floral reversion leading to ap1-like flowers and indeterminate FMs ectopically expressing WUS and SHOOT MERISTEMLESS (STM). Loss of STM can rescue supernumerary floral organs and FM indeterminacy in H3K27me3-deficient flowers, indicating that the hyperactivity of the FMs is at least partially a result of ectopic STM expression. Nonetheless, WUS remained essential for the FM activity. Our results demonstrate that PcG proteins promote FM determinacy at multiple levels of the floral gene regulatory network, silencing initially floral regulators such as AGL24 that promotes FM indeterminacy and, subsequently, meristematic pluripotency genes such as WUS and STM during FM arrest.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Meristema/genética , Meristema/metabolismo
3.
J Integr Plant Biol ; 63(8): 1462-1474, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33960113

RESUMO

In eukaryotes, histone acetylation is a major modification on histone N-terminal tails that is tightly connected to transcriptional activation. HDA6 is a histone deacetylase involved in the transcriptional regulation of genes and transposable elements (TEs) in Arabidopsis thaliana. HDA6 has been shown to participate in several complexes in plants, including a conserved SIN3 complex. Here, we uncover a novel protein complex containing HDA6, several Harbinger transposon-derived proteins (HHP1, SANT1, SANT2, SANT3, and SANT4), and MBD domain-containing proteins (MBD1, MBD2, and MBD4). We show that mutations of all four SANT genes in the sant-null mutant cause increased expression of the flowering repressors FLC, MAF4, and MAF5, resulting in a late flowering phenotype. Transcriptome deep sequencing reveals that while the SANT proteins and HDA6 regulate the expression of largely overlapping sets of genes, TE silencing is unaffected in sant-null mutants. Our global histone H3 acetylation profiling shows that SANT proteins and HDA6 modulate gene expression through deacetylation. Collectively, our findings suggest that Harbinger transposon-derived SANT domain-containing proteins are required for histone deacetylation and flowering time control in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Domesticação , Genes de Plantas , Histona Desacetilases/metabolismo , Histonas/metabolismo , Transposases/metabolismo , Acetilação , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Fenótipo , Mapas de Interação de Proteínas , Proteínas Repressoras/metabolismo
4.
PLoS Genet ; 11(12): e1005660, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26642436

RESUMO

The Polycomb group (PcG) and trithorax group (trxG) genes play crucial roles in development by regulating expression of homeotic and other genes controlling cell fate. Both groups catalyse modifications of chromatin, particularly histone methylation, leading to epigenetic changes that affect gene activity. The trxG antagonizes the function of PcG genes by activating PcG target genes, and consequently trxG mutants suppress PcG mutant phenotypes. We previously identified the ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN1 (ALP1) gene as a genetic suppressor of mutants in the Arabidopsis PcG gene LIKE HETEROCHROMATIN PROTEIN1 (LHP1). Here, we show that ALP1 interacts genetically with several other PcG and trxG components and that it antagonizes PcG silencing. Transcriptional profiling reveals that when PcG activity is compromised numerous target genes are hyper-activated in seedlings and that in most cases this requires ALP1. Furthermore, when PcG activity is present ALP1 is needed for full activation of several floral homeotic genes that are repressed by the PcG. Strikingly, ALP1 does not encode a known chromatin protein but rather a protein related to PIF/Harbinger class transposases. Phylogenetic analysis indicates that ALP1 is broadly conserved in land plants and likely lost transposase activity and acquired a novel function during angiosperm evolution. Consistent with this, immunoprecipitation and mass spectrometry (IP-MS) show that ALP1 associates, in vivo, with core components of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a widely conserved PcG protein complex which functions as a H3K27me3 histone methyltransferase. Furthermore, in reciprocal pulldowns using the histone methyltransferase CURLY LEAF (CLF), we identify not only ALP1 and the core PRC2 components but also plant-specific accessory components including EMBRYONIC FLOWER 1 (EMF1), a transcriptional repressor previously associated with PRC1-like complexes. Taken together our data suggest that ALP1 inhibits PcG silencing by blocking the interaction of the core PRC2 with accessory components that promote its HMTase activity or its role in inhibiting transcription. ALP1 is the first example of a domesticated transposase acquiring a novel function as a PcG component. The antagonistic interaction of a modified transposase with the PcG machinery is novel and may have arisen as a means for the cognate transposon to evade host surveillance or for the host to exploit features of the transposition machinery beneficial for epigenetic regulation of gene activity.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Epigênese Genética , Complexo Repressor Polycomb 2/genética , Proteínas do Grupo Polycomb/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Filogenia , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Plântula/genética , Transposases/biossíntese , Transposases/genética
5.
Plant Physiol ; 167(4): 1211-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25653316

RESUMO

Using Arabidopsis (Arabidopsis thaliana) seedlings, we identified a range of small fluorescent probes that entered the translocation stream and were unloaded at the root tip. These probes had absorbance/emission maxima ranging from 367/454 to 546/576 nm and represent a versatile toolbox for studying phloem transport. Of the probes that we tested, naturally occurring fluorescent coumarin glucosides (esculin and fraxin) were phloem loaded and transported in oocytes by the sucrose transporter, AtSUC2. Arabidopsis plants in which AtSUC2 was replaced with barley (Hordeum vulgare) sucrose transporter (HvSUT1), which does not transport esculin in oocytes, failed to load esculin into the phloem. In wild-type plants, the fluorescence of esculin decayed to background levels about 2 h after phloem unloading, making it a suitable tracer for pulse-labeling studies of phloem transport. We identified additional probes, such as carboxytetraethylrhodamine, a red fluorescent probe that, unlike esculin, was stable for several hours after phloem unloading and could be used to study phloem transport in Arabidopsis lines expressing green fluorescent protein.


Assuntos
Arabidopsis/metabolismo , Corantes Fluorescentes/metabolismo , Glucosídeos/metabolismo , Hordeum/genética , Floema/metabolismo , Animais , Arabidopsis/genética , Transporte Biológico , Cumarínicos/química , Cumarínicos/metabolismo , Esculina/metabolismo , Expressão Gênica , Genes Reporter , Glucosídeos/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oócitos , Floema/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/metabolismo , Xenopus
7.
Curr Biol ; 34(4): 793-807.e7, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38295796

RESUMO

A key adaptation of plants to life on land is the formation of water-conducting cells (WCCs) for efficient long-distance water transport. Based on morphological analyses it is thought that WCCs have evolved independently on multiple occasions. For example, WCCs have been lost in all but a few lineages of bryophytes but, strikingly, within the liverworts a derived group, the complex thalloids, has evolved a novel externalized water-conducting tissue composed of reinforced, hollow cells termed pegged rhizoids. Here, we show that pegged rhizoid differentiation in Marchantia polymorpha is controlled by orthologs of the ZHOUPI and ICE bHLH transcription factors required for endosperm cell death in Arabidopsis seeds. By contrast, pegged rhizoid development was not affected by disruption of MpNAC5, the Marchantia ortholog of the VND genes that control WCC formation in flowering plants. We characterize the rapid, genetically controlled programmed cell death process that pegged rhizoids undergo to terminate cellular differentiation and identify a corresponding upregulation of conserved putative plant cell death effector genes. Lastly, we show that ectopic expression of MpZOU1 increases production of pegged rhizoids and enhances drought tolerance. Our results support that pegged rhizoids evolved independently of other WCCs. We suggest that elements of the genetic control of developmental cell death are conserved throughout land plants and that the ZHOUPI/ICE regulatory module has been independently recruited to promote cell wall modification and programmed cell death in liverwort rhizoids and in the endosperm of flowering plant seed.


Assuntos
Arabidopsis , Marchantia , Marchantia/genética , Água , Plantas , Arabidopsis/genética , Apoptose , Parede Celular , Regulação da Expressão Gênica de Plantas
8.
Sci Rep ; 11(1): 10267, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986381

RESUMO

Tropical corals and Amphistegina, an example genus of symbiont-bearing larger benthic foraminifera, are presently living close to their thermal bleaching thresholds. As such, these essential reef-building organisms are vulnerable to the future prospect of more frequent sea surface temperature (SST) extremes. Exploring the earth's paleo-climatic record, including interglacials warmer than present, may provide insights into future oceanographic conditions. We analyse foraminiferal shell geochemical compositions, from Recent surface sediments and Marine Isotope stage (MIS) 9e and MIS11c aged sediments, from the International Ocean Discovery Program Expedition 359 Site U1467 drilled in the Inner Sea of the Maldives. We illustrate through traditional (pooled) geochemical analysis (δ18O, Mg/Ca) that tropical temperatures were indeed marginally warmer during MIS9e and MIS11c in comparison to the modern ocean. Individual foraminiferal analysis (IFA) from the Recent (representing the last few hundred years) and MIS9e samples shows SSTs occasionally breached the coral bleaching threshold similarly to the modern-day. Significantly, the number of transgressions was four times higher during MIS11c, a recognised analogue for a warmer modern world. This new knowledge and novel IFA insight and application is invaluable given thermal stress is already obvious today with an increasing number of bleaching events over the last few decades.

9.
PLoS One ; 14(9): e0222299, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513624

RESUMO

Within the world's oceans, regionally distinct ecological niches develop due to differences in water temperature, nutrients, food availability, predation and light intensity. This results in differences in the vertical dispersion of planktonic foraminifera on the global scale. Understanding the controls on these modern-day distributions is important when using these organisms for paleoceanographic reconstructions. As such, this study constrains modern depth habitats for the northern equatorial Indian Ocean, for 14 planktonic foraminiferal species (G. ruber, G. elongatus, G. pyramidalis, G. rubescens, T. sacculifer, G. siphonifera, G. glutinata, N. dutertrei, G. bulloides, G. ungulata, P. obliquiloculata, G. menardii, G. hexagonus, G. scitula) using stable isotopic signatures (δ18O and δ13C) and Mg/Ca ratios. We evaluate two aspects of inferred depth habitats: (1) the significance of the apparent calcification depth (ACD) calculation method/equations and (2) regional species-specific ACD controls. Through a comparison with five global, (sub)tropical studies we found the choice of applied equation and δ18Osw significant and an important consideration when comparing with the published literature. The ACDs of the surface mixed layer and thermocline species show a tight clustering between 73-109 m water depth coinciding with the deep chlorophyll maximum (DCM). Furthermore, the ACDs for the sub-thermocline species are positioned relative to secondary peaks in the local primary production. We surmise that food source plays a key role in the relative living depths for the majority of the investigated planktonic foraminifera within this oligotrophic environment of the Maldives and elsewhere in the tropical oceans.


Assuntos
Monitoramento Ambiental/métodos , Foraminíferos/classificação , Plâncton/classificação , Calcinose/epidemiologia , Calcinose/metabolismo , Isótopos de Cálcio/análise , Ecossistema , Oceano Índico , Ilhas do Oceano Índico , Especificidade da Espécie , Temperatura
10.
Nat Commun ; 8(1): 12, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28400552

RESUMO

RNA-binding proteins play a key role in shaping gene expression profiles during stress, however, little is known about the dynamic nature of these interactions and how this influences the kinetics of gene expression. To address this, we developed kinetic cross-linking and analysis of cDNAs (χCRAC), an ultraviolet cross-linking method that enabled us to quantitatively measure the dynamics of protein-RNA interactions in vivo on a minute time-scale. Here, using χCRAC we measure the global RNA-binding dynamics of the yeast transcription termination factor Nab3 in response to glucose starvation. These measurements reveal rapid changes in protein-RNA interactions within 1 min following stress imposition. Changes in Nab3 binding are largely independent of alterations in transcription rate during the early stages of stress response, indicating orthogonal transcriptional control mechanisms. We also uncover a function for Nab3 in dampening expression of stress-responsive genes. χCRAC has the potential to greatly enhance our understanding of in vivo dynamics of protein-RNA interactions.Protein RNA interactions are dynamic and regulated in response to environmental changes. Here the authors describe 'kinetic CRAC', an approach that allows time resolved analyses of protein RNA interactions with minute time point resolution and apply it to gain insight into the function of the RNA-binding protein Nab3.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/genética , RNA Fúngico/genética , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transcriptoma , Meios de Cultura/farmacologia , DNA Complementar/genética , DNA Complementar/metabolismo , Perfilação da Expressão Gênica , Glucose/deficiência , Cinética , Proteínas Nucleares/metabolismo , Ligação Proteica , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Fatores de Tempo , Raios Ultravioleta
11.
DNA Repair (Amst) ; 2(7): 795-807, 2003 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-12826280

RESUMO

SbcCD and other Mre11/Rad50 (MR) complexes are implicated in the metabolism of DNA ends. They cleave ends sealed by hairpin structures and have been postulated to play roles in removing protein bound to DNA termini. Here we provide direct evidence that the Escherichia coli MR complex (SbcCD) removes protein from a protein-bound DNA end by inserting a double-strand break (DSB). These observations indicate a more complex biochemical action than has been assumed previously and argue that this class of protein has the potential to play a direct role in deprotecting protein-bound DNA ends in vivo.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Exodesoxirribonucleases/metabolismo , Exonucleases/genética , Avidina , Biotina , Cromatografia em Camada Fina , DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Exodesoxirribonucleases/genética , Modelos Moleculares , Oligonucleotídeos
12.
PLoS One ; 7(2): e30715, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363474

RESUMO

In Arabidopsis, mutations in the Pc-G gene CURLY LEAF (CLF) give early flowering plants with curled leaves. This phenotype is caused by mis-expression of the floral homeotic gene AGAMOUS (AG) in leaves, so that ag mutations largely suppress the clf phenotype. Here, we identify three mutations that suppress clf despite maintaining high AG expression. We show that the suppressors correspond to mutations in FPA and FT, two genes promoting flowering, and in SEPALLATA3 (SEP3) which encodes a co-factor for AG protein. The suppression of the clf phenotype is correlated with low SEP3 expression in all case and reveals that SEP3 has a role in promoting flowering in addition to its role in controlling floral organ identity. Genetic analysis of clf ft mutants indicates that CLF promotes flowering by reducing expression of FLC, a repressor of flowering. We conclude that SEP3 is the key target mediating the clf phenotype, and that the antagonistic effects of CLF target genes masks a role for CLF in promoting flowering.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas/genética , Proteínas Repressoras/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Testes Genéticos , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Metilação , Mutação/genética , Fenótipo , Proteínas do Grupo Polycomb , Supressão Genética , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA