Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lasers Med Sci ; 28(2): 551-64, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22562449

RESUMO

Intestinal ischemia and reperfusion (i-I/R) is an insult associated with acute respiratory distress syndrome (ARDS). It is not known if pro- and anti-inflammatory mediators in ARDS induced by i-I/R can be controlled by low-level laser therapy (LLLT). This study was designed to evaluate the effect of LLLT on tracheal cholinergic reactivity dysfunction and the release of inflammatory mediators from the lung after i-I/R. Anesthetized rats were subjected to superior mesenteric artery occlusion (45 min) and killed after clamp release and preestablished periods of intestinal reperfusion (30 min, 2 or 4 h). The LLLT (660 nm, 7.5 J/cm(2)) was carried out by irradiating the rats on the skin over the right upper bronchus for 15 and 30 min after initiating reperfusion and then euthanizing them 30 min, 2, or 4 h later. Lung edema was measured by the Evans blue extravasation technique, and pulmonary neutrophils were determined by myeloperoxidase (MPO) activity. Pulmonary tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), intercellular adhesion molecule-1 (ICAM-1), and isoform of NO synthase (iNOS) mRNA expression were analyzed by real-time PCR. TNF-α, IL-10, and iNOS proteins in the lung were measured by the enzyme-linked immunoassay technique. LLLT (660 nm, 7.5 J/cm(2)) restored the tracheal hyperresponsiveness and hyporesponsiveness in all the periods after intestinal reperfusion. Although LLLT reduced edema and MPO activity, it did not do so in all the postreperfusion periods. It was also observed with the ICAM-1 expression. In addition to reducing both TNF-α and iNOS, LLLT increased IL-10 in the lungs of animals subjected to i-I/R. The results indicate that LLLT can control the lung's inflammatory response and the airway reactivity dysfunction by simultaneously reducing both TNF-α and iNOS.


Assuntos
Intestinos/irrigação sanguínea , Terapia com Luz de Baixa Intensidade , Pneumonia/radioterapia , Traqueia/fisiopatologia , Traqueia/efeitos da radiação , Animais , Regulação da Expressão Gênica/efeitos da radiação , Mediadores da Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Masculino , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Peroxidase/metabolismo , Pneumonia/etiologia , Pneumonia/metabolismo , Edema Pulmonar/radioterapia , Ratos , Ratos Wistar , Reperfusão , Traumatismo por Reperfusão/etiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
2.
Lasers Med Sci ; 26(3): 389-400, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21184127

RESUMO

The aim of this work was to investigate if the low-level laser therapy (LLLT) on acute lung inflammation (ALI) induced by lipopolysaccharide (LPS) is linked to tumor necrosis factor (TNF) in alveolar macrophages (AM) from bronchoalveolar lavage fluid (BALF) of mice. LLLT has been reported to actuate positively for relieving the late and early symptoms of airway and lung inflammation. It is not known if the increased TNF mRNA expression and dysfunction of cAMP generation observed in ALI can be influenced by LLLT. For in vivo studies, Balb/c mice (n = 5 for group) received LPS inhalation or TNF intra nasal instillation and 3 h after LPS or TNF-α, leukocytes in BALF were analyzed. LLLT administered perpendicularly to a point in the middle of the dissected bronchi with a wavelength of 660 nm and a dose of 4.5 J/cm(2). The mice were irradiated 15 min after ALI induction. In vitro AM from mice were cultured for analyses of TNF mRNA expression and protein and adenosine3':5'-cyclic monophosphate (cAMP) levels. One hour after LPS, the TNF and cAMP levels in AM were measured by ELISA. RT-PCR was used to measure TNF mRNA in AM. The LLLT was inefficient in potentiating the rolipram effect in presence of a TNF synthesis inhibitor. LLLT attenuated the neutrophil influx and TNF in BALF. In AM, the laser increased the cAMP and reduced the TNF-α mRNA. LLLT increases indirectly the cAMP in AM by a TNF-dependent mechanism.


Assuntos
AMP Cíclico/metabolismo , Terapia com Luz de Baixa Intensidade , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/radioterapia , Animais , Sequência de Bases , Primers do DNA/genética , Modelos Animais de Doenças , Lipopolissacarídeos/toxicidade , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Inibidores da Fosfodiesterase 4/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/genética , Rolipram/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
3.
Lasers Med Sci ; 25(5): 661-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20393772

RESUMO

Low-level laser therapy (LLLT) has been found to produce anti-inflammatory effects in a variety of disorders. Bronchial smooth muscle (BSM) hyperreactivity is associated with increased Ca+2 sensitivity and increased RhoA mRNA expression. In the current study, we investigated if LLLT could reduce BSM contraction force and RhoA mRNA expression in tumor necrosis factor-alpha (TNF-alpha)-induced BSM hyperreactivity. In the study, 112 male Wistar rats were divided randomly into 16 groups, and BSM was harvested and suspended in TNF-alpha baths for 6 and 24 h, respectively. Irradiation with LLLT was performed with a wavelength of 660 nm for 42 s with a dose of 1.3 J/cm2. This LLLT dose was administered once in the 6-h group and twice in the 24-h group. LLLT significantly decreased contraction force in BSM at 6 h (TNF-alpha + LLLT: 11.65+/-1.10 g/100 mg of tissue) (F=3115) and at 24 h (TNF-alpha+ LLLT: 14.15+/-1.1 g/100 mg of tissue) (F=3245, p<0.05) after TNF-alpha, respectively, when compared to vehicle-bathed groups (control). LLLT also significantly decreased the expression of RhoA mRNA in BSM segments at 6 h (1.22+/-0.20) (F=2820, p<0.05) and 24 h (2.13+/-0.20) (F=3324, p<0.05) when compared to BSM segments incubated with TNF-alpha without LLLT irradiation. We conclude that LLLT administered with this protocol, reduces RhoA mRNA expression and BSM contraction force in TNF-alpha-induced BSM hyperreactivity.


Assuntos
Brônquios/efeitos dos fármacos , Brônquios/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Músculo Liso/efeitos dos fármacos , Músculo Liso/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Proteína rhoA de Ligação ao GTP/genética , Amidas/farmacologia , Animais , Brônquios/metabolismo , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/genética , Hiper-Reatividade Brônquica/radioterapia , Sinalização do Cálcio/efeitos da radiação , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Técnicas In Vitro , Masculino , Músculo Liso/metabolismo , Piridinas/farmacologia , Ratos , Ratos Wistar
4.
Lasers Med Sci ; 24(4): 567-76, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19005736

RESUMO

The objective of this study was to investigate whether low level laser therapy (LLLT) could reduce bronchial hyper-responsiveness (BHR) induced by tumour necrosis factor-alpha (TNF-alpha) modulating the metabolism of inositol phosphate (IP) in bronchial smooth muscle cells (BSMCs). The study was on 28 Wistar rats, randomly divided into four groups. Irradiation (1.3 J/cm(2)) was administered 5 min and 4 h after bronchial smooth muscle (BSM) had been suspended in TNF-alpha baths, and the contractile response-induced calcium ion (Ca(2+)) sensitization was measured. The BSMCs were isolated, and the IP accumulation was measured before and after TNF-alpha immersion in the groups that had been irradiated or not irradiated. BSM segments significantly increased contraction 24 h after TNF-alpha immersion when exposed to carbachol (CCh) as Ca(2+), but it was significantly reduced by 64% and 30%, respectively, after laser treatment. The increase in IP accumulation induced by CCh after TNF-alpha immersion was reduced in the BSMCs by LLLT. The dose of 2.6 J/cm(2) reduced BHR and IP accumulation in the rats' inflammatory BSMCs.


Assuntos
Hiper-Reatividade Brônquica/radioterapia , Terapia com Luz de Baixa Intensidade , Animais , Sequência de Bases , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/fisiopatologia , Cálcio/metabolismo , Carbacol/farmacologia , Primers do DNA/genética , Expressão Gênica/efeitos da radiação , Técnicas In Vitro , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Fosfatos de Inositol/metabolismo , Compostos Macrocíclicos/farmacologia , Masculino , Contração Muscular/efeitos dos fármacos , Contração Muscular/efeitos da radiação , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Miócitos de Músculo Liso/efeitos da radiação , Oxazóis/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/farmacologia
5.
PLoS One ; 12(6): e0178696, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28570606

RESUMO

Considering the limited number of available lung donors, lung bioengineering using whole lung scaffolds has been proposed as an alternative approach to obtain lungs suitable for transplantation. However, some decellularization protocols can cause alterations on the structure, composition, or mechanical properties of the lung extracellular matrix. Therefore, the aim of this study was to compare the acellular lung mechanical properties when using two different routes through the trachea and pulmonary artery for the decellularization process. This study was performed by using the lungs excised from 30 healthy male C57BL/6 mice, which were divided into 3 groups: tracheal decellularization (TDG), perfusion decellularization (PDG), and control groups (CG). Both decellularized groups were subjected to decellularization protocol with a solution of 1% sodium dodecyl sulfate. The behaviour of mechanical properties of the acellular lungs was measured after decellularization process. Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. TDG and PDG showed reduced Est and Edyn elastances after lung decellularization. Scanning electron microscopy showed no structural changes after lung decellularization of the TDG and PDG. In conclusion, was demonstrated that there is no significant difference in the behaviour of mechanical properties and extracellular matrix of the decellularized lungs by using two different routes through the trachea and pulmonary artery.


Assuntos
Pulmão/citologia , Animais , Fenômenos Biomecânicos , Pulmão/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Engenharia Tecidual
6.
J Lasers Med Sci ; 5(2): 63-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25653801

RESUMO

INTRODUCTION: Intestinal ischemia and reperfusion (i-I/R) is an insult associated with acute respiratory distress syndrome (ARDS). Herein we evaluate the dose-response effect of low-level laser therapy (LLLT) on lung inflammation induced by i-I/R. METHODS: Mice were subjected to mesenteric artery occlusion (45 min) and killed after clamp release and intestinal reperfusion (2h). Increasing doses (1, 3, 5 and 7,5 J/cm(2)) of laser irradiation (660 nm) was carried out on the mice skin over the upper bronchus for 5 min after initiating reperfusion. Neutrophils activation was determined by myeloperoxidase (MPO) activity. The mRNA expression and protein concentration of inflammatory mediators IL-1ß, IL-6, TNF and IL-10 in lung were measured by RT-PCR and ELISA, respectively. RESULTS: With exception of 1J/cm(2), LLLT reduced MPO activity as well as IL-1ß levels in the lungs from inflamed mice. LLLT was also markedly effective in reducing both IL-6 and TNF expression and levels in the lungs from mice submitted to i-I/R in all laser doses studied. Otherwise, LLLT significantly increased the protein levels of IL-10 in inflamed mice by i-I/R; however only in the dose of 1J/cm(2). CONCLUSION: We conclude that the LLLT is able to control the neutrophils activation and proinflammatorycytokines release into the lungs in a model of i-I/R in mice.

7.
Photochem Photobiol ; 89(1): 179-88, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22882462

RESUMO

It remains unknown if the oxidative stress can be regulated by low-level laser therapy (LLLT) in lung inflammation induced by intestinal reperfusion (i-I/R). A study was developed in which rats were irradiated (660 nm, 30 mW, 5.4 J) on the skin over the bronchus and euthanized 2 h after the initial of intestinal reperfusion. Lung edema and bronchoalveolar lavage fluid neutrophils were measured by the Evans blue extravasation and myeloperoxidase (MPO) activity respectively. Lung histology was used for analyzing the injury score. Reactive oxygen species (ROS) was measured by fluorescence. Both expression intercellular adhesion molecule 1 (ICAM-1) and peroxisome proliferator-activated receptor-y (PPARy) were measured by RT-PCR. The lung immunohistochemical localization of ICAM-1 was visualized as a brown stain. Both lung HSP70 and glutathione protein were evaluated by ELISA. LLLT reduced neatly the edema, neutrophils influx, MPO activity and ICAM-1 mRNA expression. LLLT also reduced the ROS formation and oppositely increased GSH concentration in lung from i-I/R groups. Both HSP70 and PPARy expression also were elevated after laser irradiation. Results indicate that laser effect in attenuating the acute lung inflammation is driven to restore the balance between the pro- and antioxidants mediators rising of PPARy expression and consequently the HSP70 production.


Assuntos
Lesão Pulmonar Aguda/radioterapia , Intestinos/efeitos da radiação , Terapia com Luz de Baixa Intensidade , Pulmão/efeitos da radiação , Edema Pulmonar/radioterapia , Traumatismo por Reperfusão/radioterapia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Regulação da Expressão Gênica , Glutationa/biossíntese , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Neutrófilos/patologia , Estresse Oxidativo , PPAR gama/genética , PPAR gama/metabolismo , Peroxidase/metabolismo , Edema Pulmonar/metabolismo , Edema Pulmonar/patologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA