Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Hazard Mater ; 416: 126167, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492943

RESUMO

We synthesized NaOH-activated hydrochars via hydrothermal carbonization (HTC) of Brazilian pine fruit shells at HTC residence times of 24, 48, and 72 h. The hydrochars were used as adsorbents to remove bisphenol A (BPA) from aqueous solutions. The surface area of the samples can reach up to 2220 m2 g-1, and the maximum adsorption of BPA onto the surfaces was achieved at a pH of 7.0 (708 mg g-1). Adsorption occurred mainly via monolayer formation with a low retention time of the adsorbate (τ) on the surfaces, indicating that the BPA molecules reached the already occupied active sites and returned after undergoing heat exchange (τ > 0). Adsorption is an endothermic spontaneous process that results in a balance between entropic and enthalpic contributions. In such a reaction, ΔG°< 0, even with ΔH°> 0, the process occurs with an important increase in the entropy. The desorption was more efficient with ethanol and methanol than with HCl, NaOH, and NaCl owing to the dipole-dipole forces between the adsorbate and the alcohols. Additionally, the low desorption efficiency using acid, base, and salts can be attributed to competitive effects between the desorption agents and the active sites of the adsorbents.


Assuntos
Frutas , Poluentes Químicos da Água , Adsorção , Compostos Benzidrílicos , Frutas/química , Fenóis , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA