Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Clin Pharmacol ; 79(7): 1003-1012, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37256410

RESUMO

PURPOSE: The aim of this work was to integrate the Therapeutic Drug Monitoring (TDM) with the model-informed precision dosing (MIPD) approach, using Physiologically-based Pharmacokinetic/Pharmacodynamic (PBPK/PD) modelling and simulation, to explore the relationship between amikacin exposure and estimated glomerular filtration rate (GFR) in critically ill patients with cancer. METHODS: In the TDM study, samples from 51 critically-ill patients with cancer treated with amikacin were analysed. Patients were stratified according to renal function based on GFR status. A full-body PBPK model with 12 organs model was developed using Simcyp V. 21, including steady-state volume of distribution of 0.21 L/kg and renal clearance of 6.9 L/h in healthy adults. PK parameters evaluated were within the 2-fold error range. RESULTS: During the validation step, predicted vs observed amikacin clearance values after single infusion dose in patients with normal renal function, mild and moderate renal impairment were 7.6 vs 8.1 L/h (7.5 mg/kg dose); 3.8 vs 4.5 L/h (1500 mg dose) and 2.2 vs 3.1 L/h (25 mg/kg dose), respectively. However, predicted vs observed amikacin clearance after a single dose infusion of 1400 mg in critically-ill patients with cancer were 1.46 vs 1.63 (P = 0.6406) L/h (severe), 2.83 vs 1.08 (P < 0.05) L/h (moderate), 4.23 vs 2.49 (P = 0.0625) L/h (mild) and 7.41 vs 3.36 (P < 0.05) L/h (normal renal function). CONCLUSION: This study demonstrated that estimated GFR did not predict amikacin elimination in critically-ill patients with cancer. Further studies are necessary to find amikacin PK covariates to optimize the pharmacotherapy in this population. Therefore, TDM of amikacin is imperative in cancer patients.


Assuntos
Amicacina , Neoplasias , Adulto , Humanos , Amicacina/uso terapêutico , Estado Terminal/terapia , Taxa de Filtração Glomerular , Monitoramento de Medicamentos , Neoplasias/tratamento farmacológico , Antibacterianos/uso terapêutico
2.
Pharm Res ; 38(4): 647-655, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33825113

RESUMO

PURPOSE: Fexofenadine is a well-identified in vivo probe substrate of P-glycoprotein (P-gp) and/or organic anion transporting polypeptide (OATP). This work aimed to investigate the transplacental pharmacokinetics of fexofenadine enantiomers with and without the selective P-gp inhibitor fluoxetine. METHODS: The chiral transplacental pharmacokinetics of fexofenadine-fluoxetine interaction was determined using the ex vivo human placenta perfusion model (n = 4). In the Control period, racemic fexofenadine (75 ng of each enantiomer/ml) was added in the maternal circuit. In the Interaction period, racemic fluoxetine (50 ng of each enantiomer/mL) and racemic fexofenadine (75 ng of each enantiomer/mL) were added to the maternal circulation. In both periods, maternal and fetal perfusate samples were taken over 90 min. RESULTS: The (S)-(-)- and (R)-(+)-fexofenadine fetal-to-maternal ratio values in Control and Interaction periods were similar (~0.18). The placental transfer rates were similar between (S)-(-)- and (R)-(+)-fexofenadine in both Control (0.0024 vs 0.0019 min-1) and Interaction (0.0019 vs 0.0021 min-1) periods. In both Control and Interaction periods, the enantiomeric fexofenadine ratios [R-(+)/S-(-)] were approximately 1. CONCLUSIONS: Our study showed a low extent, slow rate of non-enantioselective placental transfer of fexofenadine enantiomers, indicating a limited fetal fexofenadine exposure mediated by placental P-gp and/or OATP2B1. The fluoxetine interaction did not affect the non-enantioselective transplacental transfer of fexofenadine. The ex vivo placental perfusion model accurately predicts in vivo placental transfer of fexofenadine enantiomers with remarkably similar values (~0.17), and thus estimates the limited fetal exposure.


Assuntos
Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacocinética , Troca Materno-Fetal/efeitos dos fármacos , Placenta/metabolismo , Terfenadina/análogos & derivados , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Área Sob a Curva , Interações Medicamentosas , Feminino , Fluoxetina/administração & dosagem , Fluoxetina/farmacocinética , Antagonistas não Sedativos dos Receptores H1 da Histamina/administração & dosagem , Humanos , Perfusão/instrumentação , Perfusão/métodos , Gravidez , Complicações na Gravidez/tratamento farmacológico , Complicações na Gravidez/imunologia , Estereoisomerismo , Terfenadina/administração & dosagem , Terfenadina/farmacocinética
3.
J Pharm Biomed Anal ; 128: 528-537, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27381871

RESUMO

A new capillary electrophoresis method for the enantioselective analysis of cis- and trans- dihydrotetrabenazine (diHTBZ) after in vitro metabolism by human liver microsomes (HLMs) was developed. The chiral electrophoretic separations were performed by using tris-phosphate buffer (pH 2.5) containing 1% (w/v) carboxymethyl-ß-CD as background electrolyte with an applied voltage of +15kV and capillary temperature kept at 15°C. Dispersive liquid-liquid microextraction was employed to extract the analytes from HLMs. Dichloromethane was used as extraction solvent (75µL) and acetone as disperser solvent (150µL). The method was validated according to official guidelines and showed to be linear over the concentration range of 0.29-19.57µmolL(-1) (r=0.9955) for each metabolite enantiomer. Within- and between-day precision and accuracy evaluated by relative standard deviation and relative error were lower than 15% for all enantiomers. The stability assay showed that the analytes kept stable under handling, storage and in metabolism conditions. After method validation, an enantioselective in vitro metabolism and in vivo pharmacokinetic prediction was carried out. This study showed a stereoselective metabolism and the observed kinetic profile indicated a substrate inhibition behavior. DiHTBZ enantiomers were catalyzed mainly by CYP2C19 and the predicted clearance suggests that liver metabolism is the main route for TBZ elimination which supports the literature data.


Assuntos
Eletroforese Capilar/métodos , Microextração em Fase Líquida/métodos , Microssomos Hepáticos/metabolismo , Tetrabenazina/farmacocinética , Citocromo P-450 CYP2C19/metabolismo , Estabilidade de Medicamentos , Humanos , Técnicas In Vitro , Reprodutibilidade dos Testes , Estereoisomerismo , Tetrabenazina/análogos & derivados , Tetrabenazina/metabolismo
4.
Sci Rep ; 6: 33646, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27681015

RESUMO

Piperlongumine (PPL), a natural plant product, has been extensively studied in cancer treatment going up on clinical trials. Since the first report related to its use on cancer research (in 2011) around 80 papers have been published in less than 10 years, but a gap still remaining. There are no metabolism studies of PPL in human organism. For the lack of a better view, here, the CYP450 in vitro oxidation of PPL was described for the first time. In addition, the enzymatic kinetic data, the predicted in vivo parameters, the produced metabolites, the phenotyping study and possible piperlongumine-drug interactions in vivo is presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA